An intrinsic volume metric for the class of convex bodies in Double-struck capital Rn

被引:0
|
作者
Besau, Florian [1 ]
Hoehner, Steven [2 ]
机构
[1] Tech Univ Wien, Inst Discrete Math & Geometry, Vienna, Austria
[2] Longwood Univ, Dept Math & Comp Sci, Farmville, VA 23909 USA
关键词
Approximation; convex body; intrinsic volume; metric; polytope; quermassintegral; EUCLIDEAN BALL; STEPWISE APPROXIMATION; RANDOM POLYTOPES; BOUNDARY; VERTICES; COMPACT;
D O I
10.1142/S0219199723500062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new intrinsic volume metric is introduced for the class of convex bodies in Double-struck capital R-n. As an application, an inequality is proved for the asymptotic best approximation of the Euclidean unit ball by arbitrarily positioned polytopes with a restricted number of vertices under this metric. This result improves the best known estimate, and shows that dropping the restriction that the polytope is contained in the ball or vice versa improves the estimate by at least a factor of dimension. The same phenomenon has already been observed in the special cases of volume, surface area and mean width approximation of the ball.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Supercritical problems with concave and convex nonlinearities in Double-struck capital RN
    Marcos do, Joao O.
    Mishra, Pawan Kumar
    Moameni, Abbas
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (06)
  • [2] Some notes on directional curvature of a convex body in Double-struck capital Rn
    Pereira, F. F.
    OPTIMIZATION, 2022, 71 (11) : 3313 - 3325
  • [3] Existence of positive solutions for a class of semipositone problem in whole Double-struck capital RN
    Alves, Claudianor O.
    de Holanda, Angelo R. F.
    dos Santos, Jefferson A.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (05) : 2349 - 2367
  • [4] Spectrality of homogeneous Moran measures on Double-struck capital Rn
    Fu, Yan-Song
    Tang, Min-Wei
    FORUM MATHEMATICUM, 2023, 35 (01) : 201 - 219
  • [5] Linear Interpolation on a Euclidean Ball in Double-struck capital Rn
    Nevskii, M. V.
    Ukhalov, A. Yu.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2020, 54 (07) : 601 - 614
  • [6] On the Fourier orthonormal bases of a class of self-similar measures on Double-struck capital Rn
    Tang, Wei
    Wang, Zhi-Yong
    FORUM MATHEMATICUM, 2023, 35 (06) : 1667 - 1684
  • [7] On the convex components of a set in Double-struck capital R n
    Giannetti, Flavia
    Stefani, Giorgio
    FORUM MATHEMATICUM, 2023, 35 (01) : 187 - 199
  • [8] Multiplicity of solutions for fractional Schrodinger systems in Double-struck capital RN
    Ambrosio, Vincenzo
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (05) : 856 - 885
  • [9] On product affine hyperspheres in Double-struck capital Rn+1
    Cheng, Xiuxiu
    Hu, Zejun
    Moruz, Marilena
    Vrancken, Luc
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (10) : 2055 - 2078
  • [10] Gibbs states and Gibbsian specifications on the space Double-struck capital RN
    Lopes, Artur O.
    Vargas, Victor
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2020, 35 (02): : 216 - 241