General (k, p)-Riemann-Liouville fractional integrals

被引:4
作者
Benaissa, Bouharket [1 ]
Budak, Huseyin [2 ]
机构
[1] Univ Tiaret, Fac Mat Sci, Lab Informat & Math, Tiaret, Algeria
[2] Duzce Univ, Dept Math, Fac Sci & Arts, TR-81620 Duzce, Turkiye
关键词
General; (k; p)-Riemann-Liouville; p)-gamma function; fractional integrals;
D O I
10.2298/FIL2408579B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main motivation of this study is to establish a general version of the Riemann-Liouville fractional integrals with two exponential parameters k and p which is determined over the (k, p)-gamma function. In particular, we present the harmonic, geometric and arithmetic (k, p)- Riemann-Liouville fractional integrals. When p = k, these integrals reduce to k-Riemann-Liouville fractional integrals. Some formulas relating to general (k, p)-Riemann-Liouville fraction integrals are also given.
引用
收藏
页码:2579 / 2586
页数:8
相关论文
共 42 条
[41]   General Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}$\end{document}-mixed chord integrals of star bodies [J].
Zhaofeng Li ;
Weidong Wang .
Journal of Inequalities and Applications, 2016 (1)
[42]   Extensions of different type parameterized inequalities for generalized (m,h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(m,h)$\end{document}-preinvex mappings via k-fractional integrals [J].
Yao Zhang ;
Ting-Song Du ;
Hao Wang ;
Yan-Jun Shen ;
Artion Kashuri .
Journal of Inequalities and Applications, 2018 (1)