General (k, p)-Riemann-Liouville fractional integrals

被引:4
作者
Benaissa, Bouharket [1 ]
Budak, Huseyin [2 ]
机构
[1] Univ Tiaret, Fac Mat Sci, Lab Informat & Math, Tiaret, Algeria
[2] Duzce Univ, Dept Math, Fac Sci & Arts, TR-81620 Duzce, Turkiye
关键词
General; (k; p)-Riemann-Liouville; p)-gamma function; fractional integrals;
D O I
10.2298/FIL2408579B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main motivation of this study is to establish a general version of the Riemann-Liouville fractional integrals with two exponential parameters k and p which is determined over the (k, p)-gamma function. In particular, we present the harmonic, geometric and arithmetic (k, p)- Riemann-Liouville fractional integrals. When p = k, these integrals reduce to k-Riemann-Liouville fractional integrals. Some formulas relating to general (k, p)-Riemann-Liouville fraction integrals are also given.
引用
收藏
页码:2579 / 2586
页数:8
相关论文
共 42 条
  • [21] On a system of Riemann-Liouville fractional differential equations with coupled nonlocal boundary conditions
    Luca, Rodica
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [22] An uncustomary calculation of the fractal dimension for graph of mixed (k, s)-Riemann-Liouville fractional integral of a bivariate continuous map
    Priya, M.
    Uthayakumar, R.
    INTERNATIONAL JOURNAL OF APPLIED NONLINEAR SCIENCE, 2022, 3 (04) : 299 - 316
  • [23] Estimations of Upper Bounds for n-th Order Differentiable Functions Involving χ-Riemann-Liouville Integrals via γ-Preinvex Functions
    Talib, Sadia
    Awan, Muhammad Uzair
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [24] Measure of non-compactness for nonlocal boundary value problems via (k, ?)-Riemann-Liouville derivative on unbounded domain
    Aphithana, Aphirak
    Sudsutad, Weerawat
    Kongson, Jutarat
    Thaiprayoon, Chatthai
    AIMS MATHEMATICS, 2023, 8 (09): : 20018 - 20047
  • [25] Hermite–Hadamard-type inequalities for interval-valued preinvex functions via Riemann–Liouville fractional integrals
    Nidhi Sharma
    Sanjeev Kumar Singh
    Shashi Kant Mishra
    Abdelouahed Hamdi
    Journal of Inequalities and Applications, 2021
  • [26] Partially Explore the Differences and Similarities between Riemann-Liouville Integral and Mellin Transform
    Zhou, Zhibiao
    Xiao, Wei
    Liang, Yongshun
    FRACTAL AND FRACTIONAL, 2022, 6 (11)
  • [27] On a (k, χ)-Hilfer fractional system with coupled nonlocal boundary conditions including various fractional derivatives and Riemann-Stieltjes integrals
    Samadi, Ayub
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2024, 29 (03): : 426 - 448
  • [28] On a system of Riemann–Liouville fractional differential equations with coupled nonlocal boundary conditions
    Rodica Luca
    Advances in Difference Equations, 2021
  • [29] Mellin transform for fractional integrals with general analytic kernel
    Rashid, Maliha
    Kalsoom, Amna
    Sager, Maria
    Inc, Mustafa
    Baleanu, Dumitru
    Alshomrani, Ali S.
    AIMS MATHEMATICS, 2022, 7 (05): : 9443 - 9462
  • [30] Some new inequalities for (k, s)-fractional integrals
    Aldhaifallah, M.
    Tomar, M.
    Nisar, K. S.
    Purohit, S. D.
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (09): : 5374 - 5381