The main motivation of this study is to establish a general version of the Riemann-Liouville fractional integrals with two exponential parameters k and p which is determined over the (k, p)-gamma function. In particular, we present the harmonic, geometric and arithmetic (k, p)- Riemann-Liouville fractional integrals. When p = k, these integrals reduce to k-Riemann-Liouville fractional integrals. Some formulas relating to general (k, p)-Riemann-Liouville fraction integrals are also given.
机构:
Gyeongsang Natl Univ, Dept Math, Jinju 52828, South Korea
Gyeongsang Natl Univ, RINS, Jinju 52828, South Korea
China Med Univ, Ctr Gen Educ, Taichung 40402, TaiwanCOMSATS Univ Islamabad, Attock Campus, Attock 43600, Pakistan
机构:
China Three Gorges Univ, Three Gorges Math Res Ctr, Yichang 443002, Peoples R China
China Three Gorges Univ, Coll Sci, Dept Math, Yichang 443002, Peoples R ChinaChina Three Gorges Univ, Three Gorges Math Res Ctr, Yichang 443002, Peoples R China
Du, Tingsong
Long, Yun
论文数: 0引用数: 0
h-index: 0
机构:
China Three Gorges Univ, Three Gorges Math Res Ctr, Yichang 443002, Peoples R ChinaChina Three Gorges Univ, Three Gorges Math Res Ctr, Yichang 443002, Peoples R China
机构:
Prince Sultan Univ, Dept Math & Gen Sci, Riyadh 12345, Saudi Arabia
China Med Univ, Dept Med Res, Taichung 40402, Taiwan
Asia Univ, Dept Comp Sci & Informat Engn, Taichung 40402, TaiwanUniv Sargodha, Dept Math, Sargodha 40100, Pakistan