Glacial geomorphology of the Vanch River basin, the western Pamirs, Tajikistan

被引:1
作者
Ma, Qiqi [1 ,3 ]
Oguchi, Takashi [1 ,2 ]
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Dept Nat Environm Studies, Kashiwa City, Japan
[2] Univ Tokyo, Ctr Spatial Informat Sci, Kashiwa City, Japan
[3] Univ Tokyo, Room 434,Kashiwa Res Complex,5-1-5 Kashiwanoha, Kashiwa, Chiba 2770882, Japan
关键词
Glacial landforms; the Vanch River basin; debris-covered glaciers; rock glaciers; DEBRIS-COVERED GLACIERS; NORTHERN TIEN-SHAN; ROCK GLACIERS; PLEISTOCENE GLACIATIONS; PERMAFROST DISTRIBUTION; MASS BALANCES; INVENTORY; KARAKORAM; REGION; HIMALAYAS;
D O I
10.1080/17445647.2024.2326827
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Geomorphological mapping of glaciers and glacial landforms helps describe the current environment and investigate past glacial changes. Here we present the first detailed 1:80,000 glacial geomorphological map of the Vanch River basin (about 2100 km2), the western Pamirs, Tajikistan [38.6667 degrees N, 72.0000 degrees E]. Mapping was performed using DEM (30 m), Landsat 8 imagery (15 m), and Google Earth images (similar to 1 m). The resultant map provides the spatial distribution of glaciers and associated erosional and depositional landforms such as cirques, glacial valleys, rock glaciers, and moraines. Morphology of the lower section of the main valley outlines the limits of Vanch Glacier in the Middle Pleistocene. Comparison with former glacier inventories indicates that the glaciers have generally been stable, but the proportion of debris-covered areas has increased since 2007. The identified 184 intact rock glaciers represent hidden water storage, providing a new basis for estimating water resources in the basin.
引用
收藏
页数:13
相关论文
共 61 条
[1]   Pleistocene glaciations of Central Asia:: results from 10Be surface exposure ages of erratic boulders from the Pamir (Tajikistan), and the Alay-Turkestan range (Kyrgyzstan) [J].
Abramowski, U. ;
Bergau, A. ;
Seebach, D. ;
Zech, R. ;
Glaser, B. ;
Sosin, P. ;
Kubik, P. W. ;
Zech, W. .
QUATERNARY SCIENCE REVIEWS, 2006, 25 (9-10) :1080-1096
[2]   A new band ratio technique for mapping debris-covered glaciers using Landsat imagery and a digital elevation model [J].
Alifu, Haireti ;
Tateishi, Ryutaro ;
Johnson, Brian .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (08) :2063-2075
[3]   Debris thickness patterns on debris-covered glaciers [J].
Anderson, Leif S. ;
Anderson, Robert S. .
GEOMORPHOLOGY, 2018, 311 :1-12
[4]   Glaciation of alpine valleys: The glacier - debris-covered glacier - rock glacier continuum [J].
Anderson, Robert S. ;
Anderson, Leif S. ;
Armstrong, William H. ;
Rossi, Matthew W. ;
Crump, Sarah E. .
GEOMORPHOLOGY, 2018, 311 :127-142
[5]  
[Anonymous], 2017, Randolph glacier inventory - A dataset of global glacier outlines, version 6 [Data set], DOI [DOI 10.7265/4M1F-GD79, 10.7265/4m1f-gd79]
[6]   Using L-band SAR coherence to delineate glacier extent [J].
Atwood, D. K. ;
Meyer, F. ;
Arendt, A. .
CANADIAN JOURNAL OF REMOTE SENSING, 2010, 36 :S186-S195
[7]   Assessment of rock glaciers and permafrost distribution in Uttarakhand, India [J].
Baral, Prashant ;
Haq, Mohd Anul ;
Yaragal, Shivaprakash .
PERMAFROST AND PERIGLACIAL PROCESSES, 2020, 31 (01) :31-56
[8]  
Benn D.I., 2010, Glaciers and Glaciation
[9]   Himalayan glacial sedimentary environments: a framework for reconstructing and dating the former extent of glaciers in high mountains [J].
Benn, DI ;
Owen, LA .
QUATERNARY INTERNATIONAL, 2002, 97-8 :3-25
[10]   Beyond confusion: Rock glaciers as cryo-conditioned landforms [J].
Berthling, Ivar .
GEOMORPHOLOGY, 2011, 131 (3-4) :98-106