Homotopy type through homology groups

被引:0
|
作者
Bravo, Andres Carnero [1 ]
Camarena, Omar Antolin [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Ciudad Univ, Mexico City 04510, Mexico
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2024年 / 30卷 / 02期
关键词
Homotopy type; Homology; CW-complex;
D O I
10.1007/s40590-024-00605-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for certain pairs of nonnegative integers, if the reduced integral homology groups of a space are nonzero only in that pair of degrees and those groups are finitely generated free abelian groups, then the space must have the weak homotopy type of a wedge of spheres of whose dimensions belong to the pair.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Cochains and homotopy type
    Michael A. Mandell
    Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 2006, 103 : 213 - 246
  • [22] ON THE HOMOTOPY TYPE OF COMPLEXES OF GRAPHS WITH BOUNDED DOMINATION NUMBER
    Gonzalez, Jesus
    Hoekstra-Mendoza, Teresa, I
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2021, 16 (03) : 153 - 174
  • [23] An odd Khovanov homotopy type
    Sarkar, Sucharit
    Scaduto, Christopher
    Stoffregen, Matthew
    ADVANCES IN MATHEMATICS, 2020, 367
  • [24] The homotopy types of Sp(3)-gauge groups
    Cutler, Tyrone
    TOPOLOGY AND ITS APPLICATIONS, 2018, 236 : 44 - 58
  • [25] The homotopy types of SO(4)-gauge groups
    Kishimoto, Daisuke
    Membrillo-Solis, Ingrid
    Theriault, Stephen
    EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (03) : 1245 - 1252
  • [26] ODD PRIMARY HOMOTOPY TYPES OF THE GAUGE GROUPS OF EXCEPTIONAL LIE GROUPS
    Hasui, Sho
    Kishimoto, Daisuke
    So, Tseleung
    Theriault, Stephen
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (04) : 1751 - 1762
  • [27] On the homotopy type of complete intersections
    Astey, L
    Gitler, S
    Micha, E
    Pastor, G
    TOPOLOGY, 2005, 44 (01) : 249 - 260
  • [28] THE PERSISTENT HOMOTOPY TYPE DISTANCE
    Frosini, Patrizio
    Landi, Claudia
    Memoli, Facundo
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2019, 21 (02) : 231 - 259
  • [29] On the homotopy type of Poincaré spaces
    Cavicchioli A.
    Spaggiari F.
    Annali di Matematica Pura ed Applicata (1923 -), 2001, 180 (3): : 331 - 358
  • [30] The homotopy type of the cobordism category
    Galatius, Soren
    Madsen, Ib
    Tillmann, Ulrike
    Weiss, Michael
    ACTA MATHEMATICA, 2009, 202 (02) : 195 - 239