A Comprehensive Review of Supervised Learning Algorithms for the Diagnosis of Photovoltaic Systems, Proposing a New Approach Using an Ensemble Learning Algorithm

被引:11
|
作者
Tchio, Guy M. Toche [1 ]
Kenfack, Joseph [2 ]
Kassegne, Djima [3 ]
Menga, Francis-Daniel [4 ]
Ouro-Djobo, Sanoussi S. [1 ,3 ]
机构
[1] Univ Lome, Reg Ctr Excellence Elect Management CERME, 01 BP 1515, Lome, Togo
[2] Univ Yaounde I, Natl Adv Sch Engn Yaounde, Lab Civil Engn & Mech, POB 8390, Yaounde, Cameroon
[3] Univ Lome, Fac Sci, Dept Phys, Solar Energy Lab, 01 BP 1515, Lome, Togo
[4] Natl Comm Dev Technol NCDT, BP 1457, Yaounde, Cameroon
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 05期
关键词
diagnosis; faults; photovoltaics; machine learning; supervised learning; extra trees; FAULT-DETECTION ALGORITHM; SUPPORT VECTOR MACHINE; ARTIFICIAL-INTELLIGENCE; FUZZY-LOGIC; SOLAR; CLASSIFICATION; NETWORK; VOLTAGE; MODELS; SVM;
D O I
10.3390/app14052072
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photovoltaic systems are prone to breaking down due to harsh conditions. To improve the reliability of these systems, diagnostic methods using Machine Learning (ML) have been developed. However, many publications only focus on specific AI models without disclosing the type of learning used. In this article, we propose a supervised learning algorithm that can detect and classify PV system defects. We delve into the world of supervised learning-based machine learning and its application in detecting and classifying defects in photovoltaic (PV) systems. We explore the various types of faults that can occur in a PV system and provide a concise overview of the most commonly used machine learning and supervised learning techniques in diagnosing such systems. Additionally, we introduce a novel classifier known as Extra Trees or Extremely Randomized Trees as a speedy diagnostic approach for PV systems. Although this algorithm has not yet been explored in the realm of fault detection and classification for photovoltaic installations, it is highly recommended due to its remarkable precision, minimal variance, and efficient processing. The purpose of this article is to assist technicians, engineers, and researchers in identifying typical faults that are responsible for PV system failures, as well as creating effective control and supervision techniques that can minimize breakdowns and ensure the longevity of installed systems.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] An Approach to Feature Selection in Intrusion Detection Systems Using Machine Learning Algorithms
    Kavitha, G.
    Elango, N. M.
    INTERNATIONAL JOURNAL OF E-COLLABORATION, 2020, 16 (04) : 48 - 58
  • [42] Fault identification for photovoltaic systems using a multi-output deep learning approach
    Mustafa, Zain
    Awad, Ahmed S. A.
    Azzouz, Maher
    Azab, Ahmed
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211
  • [43] Appendicitis Diagnosis: Ensemble Machine Learning and Explainable Artificial Intelligence-Based Comprehensive Approach
    Gollapalli, Mohammed
    Rahman, Atta
    Kudos, Sheriff A.
    Foula, Mohammed S.
    Alkhalifa, Abdullah Mahmoud
    Albisher, Hassan Mohammed
    Al-Hariri, Mohammed Taha
    Mohammad, Nazeeruddin
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (09)
  • [44] A Comprehensive Review of Deep Learning Strategies in Retinal Disease Diagnosis Using Fundus Images
    Goutam, Balla
    Hashmi, Mohammad Farukh
    Geem, Zong Woo
    Bokde, Neeraj Dhanraj
    IEEE ACCESS, 2022, 10 : 57796 - 57823
  • [45] Fault detection and diagnosis in refrigeration systems using machine learning algorithms
    Soltani, Zahra
    Sorensen, Kresten Kjaer
    Leth, John
    Bendtsen, Jan Dimon
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2022, 144 : 34 - 45
  • [46] Automated diagnosis of epilepsy from EEG signals using ensemble learning approach
    Abdulhay, Enas
    Elamaran, V
    Chandrasekar, M.
    Balaji, V. S.
    Narasimhan, K.
    PATTERN RECOGNITION LETTERS, 2020, 139 : 174 - 181
  • [47] Enhanced Preprocessing Approach Using Ensemble Machine Learning Algorithms for Detecting Liver Disease
    Md, Abdul Quadir
    Kulkarni, Sanika
    Joshua, Christy Jackson
    Vaichole, Tejas
    Mohan, Senthilkumar
    Iwendi, Celestine
    BIOMEDICINES, 2023, 11 (02)
  • [48] Inspection prioritization of gravity sanitary sewer systems using supervised machine learning algorithms
    Loganathan, Karthikeyan
    Najafi, Mohammad
    Kermanshachi, Sharareh
    Maduri, Praveen Kumar
    Pamidimukkala, Apurva
    Journal of Infrastructure Preservation and Resilience, 2024, 5 (01):
  • [49] An Ensemble approach to detect Review Spam using hybrid Machine Learning Technique
    Ahsan, M. N. Istiaq
    Nahian, Tamzid
    Kafi, Abdullah All
    Hossain, Md. Ismail
    Shah, Faisal Muhammad
    PROCEEDINGS OF THE 2016 19TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2016, : 388 - 394
  • [50] An Efficient Approach for Supervised Learning Algorithms using Different Data Mining Tools for Spam Categorization
    Mishra, Rachana
    Thakur, Ramjeevan Singh
    2014 FOURTH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT), 2014, : 472 - 477