Hyperspectral Image Classification Using Multi-Scale Lightweight Transformer

被引:2
|
作者
Gu, Quan [1 ]
Luan, Hongkang [1 ]
Huang, Kaixuan [1 ]
Sun, Yubao [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Engn Res Ctr Digital Forens, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Minist Educ, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral image classification; multi-scale spectral attention; Transformer; long-range spectral dependence; SPARSE REPRESENTATION;
D O I
10.3390/electronics13050949
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The distinctive feature of hyperspectral images (HSIs) is their large number of spectral bands, which allows us to identify categories of ground objects by capturing discrepancies in spectral information. Convolutional neural networks (CNN) with attention modules effectively improve the classification accuracy of HSI. However, CNNs are not successful in capturing long-range spectral-spatial dependence. In recent years, Vision Transformer (VIT) has received widespread attention due to its excellent performance in acquiring long-range features. However, it requires calculating the pairwise correlation between token embeddings and has the complexity of the square of the number of tokens, which leads to an increase in the computational complexity of the network. In order to cope with this issue, this paper proposes a multi-scale spectral-spatial attention network with frequency-domain lightweight Transformer (MSA-LWFormer) for HSI classification. This method synergistically integrates CNN, attention mechanisms, and Transformer into the spectral-spatial feature extraction module and frequency-domain fused classification module. Specifically, the spectral-spatial feature extraction module employs a multi-scale 2D-CNN with multi-scale spectral attention (MS-SA) to extract the shallow spectral-spatial features and capture the long-range spectral dependence. In addition, The frequency-domain fused classification module designs a frequency-domain lightweight Transformer that employs the Fast Fourier Transform (FFT) to convert features from the spatial domain to the frequency domain, effectively extracting global information and significantly reducing the time complexity of the network. Experiments on three classic hyperspectral datasets show that MSA-LWFormer has excellent performance.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] MSFF: A Multi-Scale Feature Fusion Convolutional Neural Network for Hyperspectral Image Classification
    Gong, Gu
    Wang, Xiaopeng
    Zhang, Jiahua
    Shang, Xiaodi
    Pan, Zhicheng
    Li, Zhiyuan
    Zhang, Junshi
    ELECTRONICS, 2025, 14 (04):
  • [22] A Lightweight 1-D Convolution Augmented Transformer with Metric Learning for Hyperspectral Image Classification
    Hu, Xiang
    Yang, Wenjing
    Wen, Hao
    Liu, Yu
    Peng, Yuanxi
    SENSORS, 2021, 21 (05) : 1 - 22
  • [23] Transformer based on multi-scale local feature for colon cancer histopathological image classification
    Fu, Zhibing
    Chen, Qingkui
    Wang, Mingming
    Huang, Chen
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [24] Multi-Scale Feature Transformer Based Fine-Grained Image Classification Method
    Zhang T.
    Cai C.
    Luo X.
    Zhu Y.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2023, 46 (04): : 70 - 75
  • [25] A multi-scale residual capsule network for hyperspectral image classification with small training samples
    Shi, Meilin
    Zeng, Xilong
    Ren, Jiansi
    Shi, Yichang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (26) : 40473 - 40501
  • [26] Multiattention Joint Convolution Feature Representation With Lightweight Transformer for Hyperspectral Image Classification
    Fang, Yu
    Ye, Qiaolin
    Sun, Le
    Zheng, Yuhui
    Wu, Zebin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [27] CAEVT: Convolutional Autoencoder Meets Lightweight Vision Transformer for Hyperspectral Image Classification
    Zhang, Zhiwen
    Li, Teng
    Tang, Xuebin
    Hu, Xiang
    Peng, Yuanxi
    SENSORS, 2022, 22 (10)
  • [28] Pruning Multi-Scale Multi-Branch Network for Small-Sample Hyperspectral Image Classification
    Bai, Yu
    Xu, Meng
    Zhang, Lili
    Liu, Yuxuan
    ELECTRONICS, 2023, 12 (03)
  • [29] A multi-range spectral-spatial transformer for hyperspectral image classification
    Zhang, Lan
    Wang, Yang
    Yang, Linzi
    Chen, Jianfeng
    Liu, Zijie
    Wang, Jihong
    Bian, Lifeng
    Yang, Chen
    INFRARED PHYSICS & TECHNOLOGY, 2023, 135
  • [30] An efficient multi-scale transformer for satellite image dehazing
    Yang, Lei
    Cao, Jianzhong
    Chen, Weining
    Wang, Hao
    He, Lang
    EXPERT SYSTEMS, 2024, 41 (08)