Optical sensor properties of a novel BODIPY compound for non-enzymatic detection of glucose

被引:0
|
作者
Yildirim, Selma K. [1 ]
Omeroglu, Ipek [1 ]
Durmus, Mahmut [1 ]
机构
[1] Gebze Tech Univ, Dept Chem, TR-41400 Gebze, Kocaeli, Turkiye
关键词
Diabetes; BODIPY; non-invasive; non-enzymatic; fluorescence; glucose sensor;
D O I
10.1142/S1088424624500056
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work demonstrated the preparation and characterization of a novel 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivative containing boronic acid group and investigation of its non-invasive/non-enzymatic fluorescence sensor behavior for determination of glucose. The novel BODIPY derivative bearing boronic acid pinacol ester (BODIPY-1) was synthesized by Sonogashira coupling reaction between Iodo-BODIPY and 4-ethynylphenylboronic acid pinacol ester. The target novel BODIPY-2 compound which was used as a fluorescence probe for the determination of glucose was synthesized from BODIPY-1 by changing the pinacol ester group to the boric acid moieties. The fluorescence intensity of the BODIPY-2 fluorophore decreased when it interacted with the glucose. Sensing performance towards to glucose of this probe was evaluated in detail concerning the suitable solvent, linear concentration range, convenient pH, limit of detection (LOD), limit of quantification (LOQ) and selectivity. The LOD value of BODIPY-2 was found 0.19 mM toward glucose. Also, the complex stoichiometry between the BODIPY-2 and glucose molecules was determined by Job's plot technique.
引用
收藏
页码:107 / 113
页数:7
相关论文
共 50 条
  • [41] Non-enzymatic detection of glucose using poly(azure A)-nickel
    Liu, Tong
    Luo, Yiqun
    Zhu, Jiaming
    Kong, Liyan
    Wang, Wen
    Tan, Liang
    TALANTA, 2016, 156 : 134 - 140
  • [42] Electrochemical Non-Enzymatic Detection of Glucose at Nanostructured Multilayer Electrode
    Maizelis, Antonina
    2019 IEEE 39TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2019, : 404 - 408
  • [43] Innovative ferrite sensors: Advancing non-enzymatic glucose detection
    Jasrotia, Rohit
    Raj, Kanika
    Singh, Basant
    Alluhayb, Abdullah H.
    Younis, Alaa M.
    Suman
    Ramya, M.
    Kandwal, Abhishek
    Khanna, Virat
    Singh, Virender Pratap
    Kit, Chan Choon
    SENSORS AND ACTUATORS REPORTS, 2025, 9
  • [44] Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions
    Mohapatra, Jeotikanta
    Ananthoju, Balakrishna
    Nair, Vishnu
    Mitra, Arijit
    Bahadur, D.
    Medhekar, N. V.
    Aslam, M.
    APPLIED SURFACE SCIENCE, 2018, 442 : 332 - 341
  • [45] Non-enzymatic Glucose Sensor Based on Graphene Oxide/ZnO Nanoarrays
    Liang X.
    Han L.
    Lei Y.
    Li W.
    Huang R.
    Chen R.
    Ni H.
    Zhan W.
    Cailiao Daobao/Materials Reports, 2022, 36 (13):
  • [46] Flexible hydrogel non-enzymatic QCM sensor for continuous glucose monitoring
    Liu N.
    Xiang X.
    Sun M.
    Li P.
    Qin H.
    Liu H.
    Zhou Y.
    Wang L.
    Wu L.
    Zhu J.
    Biosensors and Bioelectronics: X, 2022, 10
  • [47] A wearable non-enzymatic sensor for continuous monitoring of glucose in human sweat
    Chen, Yuhua
    Sun, Yanghan
    Li, Yi
    Wen, Zhuo
    Peng, Xinyu
    He, Yuanke
    Hou, Yuanfang
    Fan, Jingchuan
    Zang, Guangchao
    Zhang, Yuchan
    TALANTA, 2024, 278
  • [48] Nanostructured copper selenide as an ultrasensitive and selective non-enzymatic glucose sensor
    Umapathi, Siddesh
    Singh, Harish
    Masud, Jahangir
    Nath, Manashi
    MATERIALS ADVANCES, 2021, 2 (03): : 927 - 932
  • [49] Non-Enzymatic Glucose Sensor Based on Copper Nanoparticles Modified Microelectrode
    Wang, Fang
    Sun, Xianping
    Chen, Yan
    Xie, Shijing
    Chen, Zilin
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2013, 5 (06) : 624 - 629
  • [50] A non-enzymatic amperometric sensor for glucose based on cobalt oxide nanoparticles
    Sattarahmady, N.
    Heli, H.
    JOURNAL OF EXPERIMENTAL NANOSCIENCE, 2012, 7 (05) : 529 - 546