HIERARCHY OF CURVES WITH WEAKLY CONFLUENT MAPS

被引:0
|
作者
Illanes, Alejandro [1 ]
Martinez-de-la-Vega, Veronica [1 ]
Martinez-Montejano, Jorge M. [2 ]
Michalik, Daria [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
[3] Jan Kochanowski Univ, Dept Math, PL-25406 Kielce, Poland
关键词
continuum; confluent; dendrite; Gehman dendrite; monotone; universal dendrite; weakly confluent; CLASSIFICATION; MAPPINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given continua X, Y and a class F of maps between continua, define X >=(F) Y if there exists an onto map f : X -> Y belonging to F. A map f : X -> Y is weakly confluent if for each subcontinuum B of Y, there exists a subcontinuum A of X such that f(A) = B. In this paper we consider the class W of weakly confluent maps. We study the hierarchy of curves with respect to the partial order <=(W). Two continua X and Y are W-equivalent provided that X <=(W) Y and Y <=(W) X. A continuum X is W-isolated provided that the following implication holds: if Y is a continuum and X and Y are W-equivalent, then X and Y are homeomorphic. Among other results, (a) we study how the class of dendrites with finite set of ramification points behaves under <=(W), (b) using <=(W), we compare dendrites with other curves, (c) we characterize W-isolated finite graphs.
引用
收藏
页码:241 / 255
页数:15
相关论文
empty
未找到相关数据