Implementation of universal logic gates using 2:1 photonic multiplexer (MUX) of electro-optic Mach-Zehnder interferometer

被引:1
作者
Das, Sourabh Kumar [1 ]
Pahari, Nirmalya [2 ]
机构
[1] Raja NL Khan Womens Coll Autonomous, Dept Phys, Midnapore, India
[2] Vivekananda Coll, Dept Phys, Kolkata 700063, West Bengal, India
来源
JOURNAL OF OPTICS-INDIA | 2024年 / 53卷 / 05期
基金
英国科研创新办公室;
关键词
Beam propagation method; Optical computing; Binary decision diagram; Reduced binary decision diagram; Mach-Zehnder interferometer; Electro-optic effect; ALL-OPTICAL NOR; PERFORMANCE ANALYSIS; KERR TYPE; CONVERTER; CIRCUITS; XOR/XNOR; DESIGN; NAND;
D O I
10.1007/s12596-023-01642-8
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper introduces an innovative methodology for constructing NAND and NOR logic gates utilizing a 2:1 Multiplexer (MUX) based on a titanium-diffused lithium niobate electro-optic Mach-Zehnder interferometer. To optimize design efficiency and minimize the number of photonic MUX, Shannon Decomposition and Reduced Binary Decision Diagram mapping are employed for creating photonic MUX-based combinational and logic circuits. Comprehensive simulation and verification using OPTIBPM, a beam propagation method, confirm the validity of the proposed design. The 2:1 MUX-based NAND and NOR logic gates demonstrate a rapid response time of 1.56 ps, positioning them as advantageous solutions for communication systems, transmission networks, and industrial applications. Essential device parameters including extinction ratio, contrast ratio, amplitude modulation, insertion loss, and eye-opening coefficients of NAND and NOR gates, fall within acceptable limits, and electro-optic Mach-Zehnder interferometers using lithium niobate prove suitable for terahertz data speed applications. Simulation results robustly validate the proposed logic gates, contributing to the advancement of high-speed optical networking and signal processing systems based on photonic MUX configurations.
引用
收藏
页码:4059 / 4079
页数:21
相关论文
共 98 条
[1]  
AKERS SB, 1978, IEEE T COMPUT, V27, P509, DOI 10.1109/TC.1978.1675141
[2]   All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators [J].
Alipour-Banaei, Hamed ;
Serajmohammadi, Somaye ;
Mehdizadeh, Farhad .
OPTIK, 2014, 125 (19) :5701-5704
[3]   Review on all-optical logic gates: design techniques and classifications - heading toward high-speed optical integrated circuits [J].
Anagha, Erandathara Gokulan ;
Jeyachitra, Ramasamy Kandasamy .
OPTICAL ENGINEERING, 2022, 61 (06)
[4]  
Awasthi S, 2023, J COMPUT ELECTRON, V22, P485, DOI 10.1007/s10825-022-01991-w
[5]   The design of universal logic gates using microring resonator structures [J].
Azhigulov, Dias ;
Ukaegbu, Ikechi A. ;
Park, Hyo-Hoon .
PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXVII, 2019, 10912
[6]   A 2 x 1 all-optical multiplexer using Kerr nonlinear nano-plasmonic switch [J].
Bashiri, Sajjad ;
Fasihi, Kiazand .
OPTICAL AND QUANTUM ELECTRONICS, 2019, 51 (11)
[7]   Design and Performance Analysis of High Speed Optical Binary Code Converter using Micro-Ring Resonator [J].
Bharti, Gaurav Kumar ;
Rakshit, Jayanta Kumar .
FIBER AND INTEGRATED OPTICS, 2018, 37 (02) :103-121
[8]   A design of all-optical read-only memory using reflective semiconductor optical amplifier [J].
Bosu, Surajit ;
Bhattacharjee, Baibaswata .
JOURNAL OF OPTICS-INDIA, 2023, 52 (03) :1083-1093
[9]   All-optical dibit-based Feynman gate using reflective semiconductor optical amplifier with frequency encoding scheme [J].
Bosu, Surajit ;
Bhattacharjee, Baibaswata .
JOURNAL OF OPTICS-INDIA, 2023, 52 (01) :33-41
[10]  
BRYANT RE, 1986, IEEE T COMPUT, V35, P677, DOI 10.1109/TC.1986.1676819