CSI-Based MIMO Indoor Positioning Using Attention-Aided Deep Learning

被引:1
|
作者
Wan, Rongjie [1 ]
Chen, Yuxing [1 ]
Song, Suwen [2 ]
Wang, Zhongfeng [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Peoples R China
[2] Sun Yat Sen Univ, Sch Integrated Circuits, Shenzhen 518107, Peoples R China
基金
国家重点研发计划;
关键词
Training; MIMO communication; Deep learning; Task analysis; Convolution; Neural networks; Kernel; Positioning; MIMO; CSI; deep learning; attention mechanism; training scheme; LOCALIZATION;
D O I
10.1109/LCOMM.2023.3335408
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Location-based services have become an indispensable component of wireless networks, but high-precision positioning is challenging. With the application of multiple-input multiple-output (MIMO) in 5G, accurate channel state information (CSI) can be obtained and leveraged for high-precision positioning. Solving the MIMO positioning problem by deep learning has demonstrated better accuracy than traditional methods. To further improve the positioning accuracy, we propose a novel deep learning model named ACPNet, which incorporates two types of attention mechanisms and an improved training scheme. Experiment results show that compared to the state-of-the-art work, ACPNet exhibits more than 20% positioning accuracy improvement, and also maintains a relatively low computation complexity.
引用
收藏
页码:53 / 57
页数:5
相关论文
共 50 条
  • [41] Overview of Deep Learning-Based CSI Feedback in Massive MIMO Systems
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (12) : 8017 - 8045
  • [42] Joint CSI Acquisition Based on Deep Learning for FDD Massive MIMO Systems
    Li, Mengxin
    He, Jing
    Cheng, Yuan
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, VOL. 1, 2022, 878 : 980 - 987
  • [43] Deep Learning-Based Massive MIMO CSI Feedback
    Li, Jialing
    Zhang, Qi
    Xin, Xiangjun
    Tao, Ying
    Tian, Qinghua
    Tian, Feng
    Chen, Dong
    Shen, Yufei
    Cao, Guixing
    Gao, Zihe
    Qian, Jinxi
    2019 18TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN), 2019,
  • [44] CSI Feedback Based on Deep Learning for Massive MIMO Systems
    Liao, Yong
    Yao, Haimei
    Hua, Yuanxiao
    Li, Chunguo
    IEEE ACCESS, 2019, 7 : 86810 - 86820
  • [45] Subcarrier selection for efficient CSI-based indoor localization
    Taso, Yu
    Yeh, Shih-Chun
    Liang, Yu-You
    Wang, Chu-Hsuan
    Fang, Shih-Hau
    2018 INTERNATIONAL JOINT CONFERENCE ON MATERIALS SCIENCE AND MECHANICAL ENGINEERING, 2018, 383
  • [46] Passive Indoor Visible Light Positioning System Using Deep Learning
    Majeed, Khaqan
    Hranilovic, Steve
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (19): : 14810 - 14821
  • [47] Research on indoor positioning of power grid equipment based on deep learning
    Wang Xianchun
    Shang Li
    Li Yichao
    Cai Shuo
    ENERGY REPORTS, 2022, 8 : 713 - 722
  • [48] Indoor Fingerprinting With Bimodal CSI Tensors: A Deep Residual Sharing Learning Approach
    Wang, Xiangyu
    Wang, Xuyu
    Mao, Shiwen
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (06) : 4498 - 4513
  • [49] Unsupervised View-Selective Deep Learning for Practical Indoor Localization Using CSI
    Kim, Minseuk
    Han, Dongsoo
    Rhee, June-Koo Kevin
    IEEE SENSORS JOURNAL, 2021, 21 (21) : 24398 - 24408
  • [50] A Lightweight Design to Convolution-Based Deep Learning CSI Feedback
    Hu, Zhengyang
    Zou, Yafei
    Xue, Jiang
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (09) : 2081 - 2085