Optimal dietary zinc inclusion improved growth performance, serum antioxidant capacity, immune status, and liver lipid and glucose metabolism of largemouth bass (Micropterus salmoides)

被引:4
|
作者
Gu, Dianchao [1 ,2 ]
Mao, Xiangjie [1 ]
Azm, Fatma Ragab Abouel [1 ,3 ]
Zhu, Wenhuan [4 ]
Huang, Tianle [4 ]
Wang, Xiaoyu [1 ]
Ni, Xinyu [1 ]
Zhou, Meng [1 ]
Shen, Jianzhong [1 ]
Tan, Qingsong [1 ]
机构
[1] Huazhong Agr Univ, Coll Fisheries,Hubei Prov Engn Lab Pond Aquacultur, Minist Agr & Rural Affairs, Key Lab Freshwater Anim Breeding, Wuhan 430070, Peoples R China
[2] Hunan Depan Biotechnol Co Ltd, Changning, Peoples R China
[3] Benha Univ, Fac Vet Med, Anim Nutr & Clin Nutr Dept, Toukh 13736, Egypt
[4] Wuhan Fisheries Technol Extens & Instruct Ctr, Wuhan 430012, Peoples R China
关键词
Zinc requirement; Growth; Health status; Liver transcriptome; WHITE FISH-MEAL; RAINBOW-TROUT; DISEASE RESISTANCE; ENZYME-ACTIVITIES; OXIDATIVE STRESS; JUVENILE GROUPER; REQUIREMENT; CARP; SUPPLEMENTATION; BIOAVAILABILITY;
D O I
10.1016/j.fsi.2023.109233
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
This study was conducted to ascertain the effect of dietary Zn on growth and health status of juvenile largemouth bass (Micropterus salmoides). Six experimental diets with Zn level of 50.17, 56.74, 73.34, 86.03, 123.94, and 209.20 mg/kg, respectively were compounded using complex amino acid-chelated zinc, and were fed to juvenile fish (5.50 +/- 0.10 g) for 70 d. The specific growth rate (SGR) varied with dietary Zn level in a quadratic model and peaked at the 73.34 mg/kg group, while the feeding rate exhibited an opposite trend (P < 0.05). The condition factor, hepatosomatic index and mesenteric fat index all exhibited a tendency similar with SGR (P < 0.05). Dietary Zn level affected serum total proteins, urea, triglycerides, and glucose (P < 0.05). Serum Zn and copper levels linearly increased with dietary Zn level, while serum iron and manganese showed the opposite trend. Serum superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) increased with dietary Zn level and reached a plateau at 86.03 mg/kg. Serum complement component 3 (C3), IgM, and lysozyme also were enhanced by 73.34 mg/kg Zn. Body protein content increased with zinc level up to 73.34 mg/kg, and then remained steadily. As dietary Zn level increased, hepatic lipid level increased and then reached a plateau at 86.03 mg/kg group, while glycogen increased linearly. Moreover, gene expression related to lipid and glycogen metabolism from liver transcriptome further explained the liver lipid and glycogen variations. To conclude, a dietary Zn requirement of 76.99 mg/kg was suggested for juvenile largemouth bass to improve growth, anti-oxidant capacity, and immune status.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Effect of starch sources on growth, hepatic glucose metabolism and antioxidant capacity in juvenile largemouth bass, Micropterus salmoides
    Song, Ming-Qi
    Shi, Chao-Ming
    Lin, Shi-Mei
    Chen, Yong-Jun
    Shen, Huang-Mian
    Luo, Li
    AQUACULTURE, 2018, 490 : 355 - 361
  • [22] High dietary starch impaired growth performance, liver histology and hepatic glucose metabolism of juvenile largemouth bass,Micropterus salmoides
    Zhang, Yanmei
    Xie, Shiwei
    Wei, Hanlin
    Zheng, Lu
    Liu, Zhenlu
    Fang, Haohang
    Xie, Jiajun
    Liao, Shiyu
    Tian, Lixia
    Liu, Yongjian
    Niu, Jin
    AQUACULTURE NUTRITION, 2020, 26 (04) : 1083 - 1095
  • [23] Effects of Dietary Inclusion of Clostridium autoethanogenum Protein on the Growth Performance and Liver Health of Largemouth Bass (Micropterus salmoides)
    Lu, Qisheng
    Xi, Longwei
    Liu, Yulong
    Gong, Yulong
    Su, Jingzhi
    Han, Dong
    Yang, Yunxia
    Jin, Junyan
    Liu, Haokun
    Zhu, Xiaoming
    Xie, Shouqi
    FRONTIERS IN MARINE SCIENCE, 2021, 8
  • [24] The effect of dietary Tenebrio molitor meal inclusion on growth performance and liver health of largemouth bass (Micropterus salmoides)
    Su, J.
    Liu, Y.
    Xi, L.
    Lu, Q.
    Liu, H.
    Jin, J.
    Yang, Y.
    Zhu, X.
    Han, D.
    Xie, S.
    JOURNAL OF INSECTS AS FOOD AND FEED, 2022, 8 (11) : 1297 - 1309
  • [25] Effects of High Starch and Supplementation of an Olive Extract on the Growth Performance, Hepatic Antioxidant Capacity and Lipid Metabolism of Largemouth Bass (Micropterus salmoides)
    Liang, Xiaofang
    Chen, Pei
    Wu, Xiaoliang
    Xing, Shujuan
    Morais, Sofia
    He, Maolong
    Gu, Xu
    Xue, Min
    ANTIOXIDANTS, 2022, 11 (03)
  • [26] Effects of Dietary Tea Polyphenols on the Growth, Antioxidant Status, Immune Function, and Intestinal Microbiota of Largemouth Bass (Micropterus salmoides)
    Yang, Zixin
    Su, Qiuwen
    Yang, Jiafa
    Li, Zhijun
    Lan, Shanren
    Jia, Xu
    Ouyang, Paihuai
    Tang, Huijuan
    ANIMALS, 2025, 15 (02):
  • [27] Impact of dietary zinc on the growth performance, histopathological analysis, antioxidant capability, and inflammatory response of largemouth bass Micropterus salmoides
    Kou, Hongyan
    Liu, Xueting
    Hu, Junru
    Lin, Gang
    Zhang, Yufan
    Lin, Li
    FISH & SHELLFISH IMMUNOLOGY, 2023, 141
  • [28] Effects of dietary carbohydrate levels on the growth, glycometabolism, antioxidant capacity and metabolome of largemouth bass (Micropterus salmoides)
    Gao, Bin
    Zhang, Xiaoyu
    Zhang, Ye
    Li, Songlin
    Lu, Liqun
    Xu, Dan
    Liu, Xingwang
    AQUACULTURE RESEARCH, 2022, 53 (10) : 3748 - 3758
  • [29] A Study on the Dietary Yeast Polysaccharide Supplementation in Growth Performance, Antioxidant Capacity, and Immunity of Juvenile Largemouth Bass (Micropterus salmoides)
    Qin, Junjie
    Mi, Haifeng
    Ren, Mingchun
    Huang, Dongyu
    Liang, Hualiang
    Zhang, Lu
    Teng, Tao
    Yin, Heng
    FISHES, 2025, 10 (01)
  • [30] Effect of high dietary starch levels on growth, hepatic glucose metabolism, oxidative status and immune response of juvenile largemouth bass, Micropterus salmoides
    Lin, Shi-Mei
    Shi, Chao-Ming
    Mu, Ming-Ming
    Chen, Yong-Jun
    Luo, Li
    FISH & SHELLFISH IMMUNOLOGY, 2018, 78 : 121 - 126