Luminescence Thermometry with Nanoparticles: A Review

被引:37
作者
Far, Ljubica Dacanin [1 ]
Dramicanin, Miroslav D. [1 ]
机构
[1] Univ Belgrade, Vinca Inst Nucl Sci, Natl Inst Republ Serbia, Ctr Excellence Photoconvers, POB 522, Belgrade 11001, Serbia
关键词
luminescence thermometry; luminescence; nanoparticles; thermometry; nanophosphors; quantum dots; nanodiamonds; TEMPERATURE SENSITIVITY MODULATION; QUANTUM DOTS; CARBON NANODOTS; IN-VIVO; FLUORESCENT NANODIAMONDS; SPECTROSCOPIC PROPERTIES; UP-CONVERSION; NANOTHERMOMETER; PHOTOLUMINESCENCE; EU3+;
D O I
10.3390/nano13212904
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Luminescence thermometry has emerged as a very versatile optical technique for remote temperature measurements, exhibiting a wide range of applicability spanning from cryogenic temperatures to 2000 K. This technology has found extensive utilization across many disciplines. In the last thirty years, there has been significant growth in the field of luminous thermometry. This growth has been accompanied by the development of temperature read-out procedures, the creation of luminescent materials for very sensitive temperature probes, and advancements in theoretical understanding. This review article primarily centers on luminescent nanoparticles employed in the field of luminescence thermometry. In this paper, we provide a comprehensive survey of the recent literature pertaining to the utilization of lanthanide and transition metal nanophosphors, semiconductor quantum dots, polymer nanoparticles, carbon dots, and nanodiamonds for luminescence thermometry. In addition, we engage in a discussion regarding the benefits and limitations of nanoparticles in comparison with conventional, microsized probes for their application in luminescent thermometry.
引用
收藏
页数:32
相关论文
共 157 条
[1]  
Adachi C., 2007, Fundamentals of Phosphors, P51
[2]   Quantum dots to probe temperature and pressure in highly confined liquids [J].
Albahrani, Sayed M. B. ;
Seoudi, Tarek ;
Philippon, David ;
Lafarge, Lionel ;
Reiss, Peter ;
Hajjaji, Hamza ;
Guillot, Gerard ;
Querry, Michel ;
Bluet, Jean-Marie ;
Vergne, Philippe .
RSC ADVANCES, 2018, 8 (41) :22897-22908
[3]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[4]   Fluorescent nanodiamonds for luminescent thermometry in the biological transparency window [J].
Alkahtani, Masfer H. ;
Alghannam, Fahad ;
Jiang, Linkun ;
Rampersaud, Arfaan A. ;
Brick, Robert ;
Gomes, Carmen L. ;
Scully, Marlan O. ;
Hemmer, Philip R. .
OPTICS LETTERS, 2018, 43 (14) :3317-3320
[5]   Upconversion and anti-stokes processes with f and d ions in solids [J].
Auzel, F .
CHEMICAL REVIEWS, 2004, 104 (01) :139-173
[6]   Real-Time Thermal Imaging based on the Simultaneous Rise and Decay Luminescence Lifetime Thermometry [J].
Avram, Daniel ;
Porosnicu, Ioana ;
Patrascu, Andrei ;
Tiseanu, Carmen .
ADVANCED PHOTONICS RESEARCH, 2022, 3 (06)
[7]  
Avram N.M., 2013, Optical Properties of 3d-Ions in Crystals: Spectroscopy and Crystal Field Analysis
[8]   Luminescence based temperature bio-imaging: Status, challenges, and perspectives [J].
Bednarkiewicz, A. ;
Drabik, J. ;
Trejgis, K. ;
Jaque, D. ;
Ximendes, E. ;
Marciniak, L. .
APPLIED PHYSICS REVIEWS, 2021, 8 (01)
[9]   Standardizing luminescence nanothermometry for biomedical applications [J].
Bednarkiewicz, Artur ;
Marciniak, Lukasz ;
Carlos, Luis D. ;
Jaque, Daniel .
NANOSCALE, 2020, 12 (27) :14405-14421
[10]   An inkjet-printable fluorescent thermal sensor based on CdSe/ZnS quantum dots immobilised in a silicone matrix [J].
Birchall, L. ;
Foerster, A. ;
Rance, G. A. ;
Terry, A. ;
Wildman, R. D. ;
Tuck, C. J. .
SENSORS AND ACTUATORS A-PHYSICAL, 2022, 347