A cooperative hierarchical deep reinforcement learning based multi-agent method for distributed job shop scheduling problem with random job arrivals

被引:17
|
作者
Huang, Jiang-Ping [1 ]
Gao, Liang [1 ]
Li, Xin-Yu [1 ]
Zhang, Chun-Jiang [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
关键词
Shop scheduling; Distributed manufacturing; Deep reinforcement learning; Multi-agent; GENETIC ALGORITHM; DISPATCHING RULES; MAKESPAN; MODEL; TIME;
D O I
10.1016/j.cie.2023.109650
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Distributed manufacturing can reduce the production cost through the cooperation among factories, and it has been an important trend in the industrial field. For the enterprises with daily delivered production tasks, the random job arrivals are regular. Thus, the Distributed Job-shop Scheduling Problem (DJSP) with random job arrivals is studied, and it is a typical case from the equipment manufacturing industry. The DJSP involves two coupled decision-making processes, job assigning and job sequencing, and the distributed and uncertain pro-duction environment requires the scheduling method to be more responsive and adaptive. Thus, a Deep Rein-forcement Learning (DRL) based multi-agent method is explored, and it is composed of the assigning agent and the sequencing agent. Two Markov Decision Processes (MDPs) are formulated for the two agents respectively. In the MDP for the assigning agent, fourteen factory-and-job related features are extracted as the state features, seven composite assigning rules are designed as the candidate actions, and the reward depends on the total processing time of different factories. In the MDP of the sequencing agent, five machine-and-job related features are set as the state features, six sequencing rules make up the action space, and the change of the factory makespan is the reward. Besides, to enhance the learning ability of the agents, a Deep Q-Network (DQN) framework with variable threshold probability in the training stage is designed, which can balance the exploi-tation and exploration in the model training. The proposed multi-agent method's effectiveness is proved by the independent utility test and the comparison test that are based on 1350 production instances, and its practical value in the actual production is implied by the case study from an automotive engine manufacturing company.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning
    Luo, Shu
    APPLIED SOFT COMPUTING, 2020, 91
  • [22] Dynamic Job-Shop Scheduling Based on Transformer and Deep Reinforcement Learning
    Song, Liyuan
    Li, Yuanyuan
    Xu, Jiacheng
    PROCESSES, 2023, 11 (12)
  • [23] Dynamic flexible job shop scheduling algorithm based on deep reinforcement learning
    Zhao, Tianrui
    Wang, Yanhong
    Tan, Yuanyuan
    Zhang, Jun
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 5099 - 5104
  • [24] Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning
    Luo, Shu
    Zhang, Linxuan
    Fan, Yushun
    COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 159
  • [25] Dynamic flexible job shop scheduling based on deep reinforcement learning
    Yang, Dan
    Shu, Xiantao
    Yu, Zhen
    Lu, Guangtao
    Ji, Songlin
    Wang, Jiabing
    He, Kongde
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2024,
  • [26] A new immune multi-agent system for the flexible job shop scheduling problem
    Wei Xiong
    Dongmei Fu
    Journal of Intelligent Manufacturing, 2018, 29 : 857 - 873
  • [27] Dynamic flexible job-shop scheduling by multi-agent reinforcement learning with reward-shaping
    Zhang, Lixiang
    Yan, Yan
    Yang, Chen
    Hu, Yaoguang
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [28] MODEL DESIGN OF JOB SHOP SCHEDULING BASED ON MULTI-AGENT SYSTEM
    Li Qing-song
    Du Li-ming
    2009 IITA INTERNATIONAL CONFERENCE ON SERVICES SCIENCE, MANAGEMENT AND ENGINEERING, PROCEEDINGS, 2009, : 233 - 236
  • [29] Dynamic scheduling for flexible job shop using a deep reinforcement learning approach
    Gui, Yong
    Tang, Dunbing
    Zhu, Haihua
    Zhang, Yi
    Zhang, Zequn
    COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 180
  • [30] An end-to-end deep reinforcement learning method based on graph neural network for distributed job-shop scheduling problem
    Huang, Jiang-Ping
    Gao, Liang
    Li, Xin-Yu
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238