A machine-learning tool to predict substrate-adaptive conditions for Pd-catalyzed C-N couplings

被引:50
作者
Rinehart, N. Ian [1 ]
Saunthwal, Rakesh K. [1 ]
Wellauer, Joel [2 ]
Zahrt, Andrew F. [1 ]
Schlemper, Lukas [2 ]
Shved, Alexander S. [1 ]
Bigler, Raphael [2 ]
Fantasia, Serena [2 ]
Denmark, Scott E. [1 ]
机构
[1] Univ Illinois, Roger Adams Lab, Dept Chem, Urbana, IL 61801 USA
[2] HoffmannLa Roche Ltd, Div Pharmaceut, Synthet Mol Tech Dev, Proc Chem & Catalysis, Basel, Switzerland
基金
美国国家科学基金会;
关键词
ARYL HALIDES; EFFICIENT CATALYST; ARYLATION; LIGAND; AMINATION; INDOLES; OPTIMIZATION; DESIGN; HYDROGENATION; DISCOVERY;
D O I
10.1126/science.adg2114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Machine-learning methods have great potential to accelerate the identification of reaction conditions for chemical transformations. A tool that gives substrate-adaptive conditions for palladium (Pd)-catalyzed carbon-nitrogen (C-N) couplings is presented. The design and construction of this tool required the generation of an experimental dataset that explores a diverse network of reactant pairings across a set of reaction conditions. A large scope of C-N couplings was actively learned by neural network models by using a systematic process to design experiments. The models showed good performance in experimental validation: Ten products were isolated in more than 85% yield from a range of couplings with out-of-sample reactants designed to challenge the models. Importantly, the developed workflow continually improves the prediction capability of the tool as the corpus of data grows.
引用
收藏
页码:965 / 972
页数:8
相关论文
共 95 条
[31]   Amination reactions of aryl halides with nitrogen-containing reagents mediated by palladium/imidazolium salt systems [J].
Grasa, GA ;
Viciu, MS ;
Huang, JK ;
Nolan, SP .
JOURNAL OF ORGANIC CHEMISTRY, 2001, 66 (23) :7729-7737
[32]   Chan-Lam Amination of Secondary and Tertiary Benzylic Boronic Esters [J].
Grayson, James D. ;
Dennis, Francesca M. ;
Robertson, Craig C. ;
Partridge, Benjamin M. .
JOURNAL OF ORGANIC CHEMISTRY, 2021, 86 (14) :9883-9897
[33]   Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations [J].
Grimme, Stefan .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (05) :2847-2862
[34]   FLUORESCENT HETEROCYCLIC-SYSTEMS - SYNTHESES, STRUCTURES, AND PHYSICOCHEMICAL PROPERTIES OF DIPYRIDO-SUBSTITUTED 1,3,4,6-TETRAAZAPENTALENES [J].
GROZIAK, MP ;
WILSON, SR ;
CLAUSON, GL ;
LEONARD, NJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1986, 108 (25) :8002-8006
[35]  
GURAM AS, 1995, ANGEW CHEM INT EDIT, V34, P1348, DOI 10.1002/anie.199513481
[36]   Array programming with NumPy [J].
Harris, Charles R. ;
Millman, K. Jarrod ;
van der Walt, Stefan J. ;
Gommers, Ralf ;
Virtanen, Pauli ;
Cournapeau, David ;
Wieser, Eric ;
Taylor, Julian ;
Berg, Sebastian ;
Smith, Nathaniel J. ;
Kern, Robert ;
Picus, Matti ;
Hoyer, Stephan ;
van Kerkwijk, Marten H. ;
Brett, Matthew ;
Haldane, Allan ;
del Rio, Jaime Fernandez ;
Wiebe, Mark ;
Peterson, Pearu ;
Gerard-Marchant, Pierre ;
Sheppard, Kevin ;
Reddy, Tyler ;
Weckesser, Warren ;
Abbasi, Hameer ;
Gohlke, Christoph ;
Oliphant, Travis E. .
NATURE, 2020, 585 (7825) :357-362
[37]  
Hartwig J. F., 2019, Org. React., V100, P853, DOI [10.1002/0471264180.or100.14, DOI 10.1002/0471264180.OR100.14]
[38]   Phoenics: A Bayesian Optimizer for Chemistry [J].
Hase, Florian ;
Roch, Loic M. ;
Kreisbeck, Christoph ;
Aspuru-Guzik, Alan .
ACS CENTRAL SCIENCE, 2018, 4 (09) :1134-1145
[39]   Development of a Computer-Guided Workflow for Catalyst Optimization. Descriptor Validation, Subset Selection, and Training Set Analysis [J].
Henle, Jeremy J. ;
Zahrt, Andrew F. ;
Rose, Brennan T. ;
Darrow, William T. ;
Wang, Yang ;
Denmark, Scott E. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (26) :11578-11592
[40]   Biaryl monophosphine ligands in palladium-catalyzed C-N coupling: An updated User's guide [J].
Ingoglia, Bryan T. ;
Wagen, Corin C. ;
Buchwald, Stephen L. .
TETRAHEDRON, 2019, 75 (32) :4199-4211