A successive midpoint method for nonlinear differential equations with classical and Caputo-Fabrizio derivatives

被引:3
|
作者
Atangana, Abdon [1 ,2 ]
Araz, Seda Igret [1 ,3 ]
机构
[1] Univ Free State, Fac Nat & Agr Sci, Bloemfontein, South Africa
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[3] Siirt Univ, Fac Educ, TR-56100 Siirt, Turkiye
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 11期
关键词
midpoint method; Caratheodory-Tonelli sequence; Caputo-Fabrizio fractional derivative; OPERATOR-EQUATIONS;
D O I
10.3934/math.20231397
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we present a numerical scheme for solving nonlinear ordinary differential equations with classical and Caputo-Fabrizio derivatives using consecutive interval division and the midpoint approach. By doing so, we increased the accuracy of the midpoint approach, which is dependent on the number of interval divisions. In the example of the Caputo-Fabrizio differential operator, we established the existence and uniqueness of the solution using the Caratheodory-Tonelli sequence. We solved numerous nonlinear equations and determined the global error to test the accuracy of the proposed scheme. When the differential equation met the circumstances under which it was generated, the results revealed that the procedure was quite accurate.
引用
收藏
页码:27309 / 27327
页数:19
相关论文
共 44 条
  • [1] Caputo-Fabrizio fractional differential equations with instantaneous impulses
    Abbas, Said
    Benchohra, Mouffak
    Nieto, Juan J.
    AIMS MATHEMATICS, 2021, 6 (03): : 2932 - 2946
  • [2] A NEW NUMERICAL METHOD FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS IN THE SENSE OF CAPUTO-FABRIZIO DERIVATIVE
    Herik, Leila Moghadam Dizaj
    Javidi, Mohammad
    Shafiee, Mahmoud
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (01): : 51 - 66
  • [3] GENERALIZED CAPUTO-FABRIZIO FRACTIONAL DIFFERENTIAL EQUATION
    Onitsuka, Masakazu
    EL-Fassi, Iz-iddine
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 964 - 975
  • [4] The differential transform of the Caputo-Fabrizio fractional derivative
    Alahmad, Rami
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 33 (02): : 137 - 145
  • [5] Random Caputo-Fabrizio fractional differential inclusions
    Abbas, Said
    Benchohra, Mouffak
    Henderson, Johnny
    MATHEMATICAL MODELLING AND CONTROL, 2021, 1 (02): : 102 - 111
  • [6] Existence and uniqueness results of nonlinear hybrid Caputo-Fabrizio fractional differential equations with periodic boundary conditions
    Monsif, L.
    El Ghordaf, J.
    Oukessou, M.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [7] Impulsive Caputo-Fabrizio fractional differential equations in b-metric spaces
    Lazreg, Jamal Eddine
    Abbas, Said
    Benchohra, Mouffak
    Karapinar, Erdal
    OPEN MATHEMATICS, 2021, 19 (01): : 363 - 372
  • [8] FUNDAMENTAL RESULTS ON SYSTEMS OF FRACTIONAL DIFFERENTIAL EQUATIONS INVOLVING CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE
    Al-Refai, Mohammed
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 13 (03): : 389 - 399
  • [9] Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative
    Sitthiwirattham, Thanin
    Gul, Rozi
    Shah, Kamal
    Mahariq, Ibrahim
    Soontharanon, Jarunee
    Ansari, Khursheed J.
    AIMS MATHEMATICS, 2022, 7 (03): : 4017 - 4037
  • [10] Analysis of mathematical model involving nonlinear systems of Caputo-Fabrizio fractional differential equation
    Kebede, Shiferaw Geremew
    Lakoud, Assia Guezane
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)