Zn-based batteries for energy storage

被引:26
作者
Xiao, Dengji [1 ,2 ]
Lv, Ximei [1 ,2 ]
Fan, Jiahong [1 ,2 ]
Li, Qian [3 ]
Chen, Zhongwei [4 ]
机构
[1] Nanjing Tech Univ, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Jiangsu, Peoples R China
[2] Nanjing Tech Univ, Sch Energy Sci & Engn, Nanjing 211816, Jiangsu, Peoples R China
[3] Nanjing Tech Univ, Sch Mat Sci & Engn, 30 Puzhu South Rd, Nanjing 211816, Jiangsu, Peoples R China
[4] Univ Waterloo, Waterloo Inst Nanotechnol, Dept Chem Engn, Waterloo, ON N2L 3G1, Canada
来源
ENERGY MATERIALS | 2023年 / 3卷 / 01期
关键词
Batteries; Zn-based batteries; energy storage; METAL-AIR BATTERIES; FLOW BATTERIES; LOW-COST; DENSITY; ELECTROLYTE; CATHODE; ANODE; ELECTROCATALYSTS; INTEGRATION; IMPROVEMENT;
D O I
10.20517/energymater.2022.84
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Zn-based electrochemistry is considered to be the most promising alternative to Li-ion batteries due to its abundant reserves and cost-effectiveness. In addition, aqueous electrolytes are more convenient to be used in Zn-based batteries due to their good compatibility with Zn-chemistry, thereby reducing cost and improving safety. Furthermore, Zn2+/Zn couples involve two-electron redox chemistry, which can provide higher theoretical energy capacity and energy density. Based on this, a series of Zn-based battery systems, including Zn-ion batteries, Zn-air batteries, and Zn-based redox flow batteries, have received more and more research attention. Here, the fundamentals and recent advances in Zn-based rechargeable batteries are presented, along with perspectives on further research directions.
引用
收藏
页数:13
相关论文
共 100 条
  • [1] Scientific Challenges for the Implementation of Zn-Ion Batteries
    Blanc, Lauren E.
    Kundu, Dipan
    Nazar, Linda F.
    [J]. JOULE, 2020, 4 (04) : 771 - 799
  • [2] Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
  • [3] Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis
    Bu, Lingzheng
    Guo, Shaojun
    Zhang, Xu
    Shen, Xuan
    Su, Dong
    Lu, Gang
    Zhu, Xing
    Yao, Jianlin
    Guo, Jun
    Huang, Xiaoqing
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [4] A review on energy chemistry of fast-charging anodes
    Cai, Wenlong
    Yao, Yu-Xing
    Zhu, Gao-Long
    Yan, Chong
    Jiang, Li-Li
    He, Chuanxin
    Huang, Jia-Qi
    Zhang, Qiang
    [J]. CHEMICAL SOCIETY REVIEWS, 2020, 49 (12) : 3806 - 3833
  • [5] Recent Progress in Non-Precious Catalysts for Metal-Air Batteries
    Cao, Ruiguo
    Lee, Jang-Soo
    Liu, Meilin
    Cho, Jaephil
    [J]. ADVANCED ENERGY MATERIALS, 2012, 2 (07) : 816 - 829
  • [6] Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery
    Chen, Shigang
    Lan, Rong
    Humphreys, John
    Tao, Shanwen
    [J]. ENERGY STORAGE MATERIALS, 2020, 28 : 205 - 215
  • [7] High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes
    Chen, Shuru
    Zheng, Jianming
    Mei, Donghai
    Han, Kee Sung
    Engelhard, Mark H.
    Zhao, Wengao
    Xu, Wu
    Liu, Jun
    Zhang, Ji-Guang
    [J]. ADVANCED MATERIALS, 2018, 30 (21)
  • [8] Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts
    Cheng, Fangyi
    Chen, Jun
    [J]. CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) : 2172 - 2192
  • [9] Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction
    Chung, Dong Young
    Jun, Samuel Woojoo
    Yoon, Gabin
    Kwon, Soon Gu
    Shin, Dong Yun
    Seo, Pilseon
    Yoo, Ji Mun
    Shin, Heejong
    Chung, Young-Hoon
    Kim, Hyunjoong
    Mun, Bongjin Simon
    Lee, Kug-Seung
    Lee, Nam-Suk
    Yoo, Sung Jong
    Lim, Dong-Hee
    Kang, Kisuk
    Sung, Yung-Eun
    Hyeon, Taeghwan
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (49) : 15478 - 15485
  • [10] The Current State of Aqueous Zn-Based Rechargeable Batteries
    Deng, Ya-Ping
    Liang, Ruilin
    Jiang, Gaopeng
    Jiang, Yi
    Yu, Aiping
    Chen, Zhongwei
    [J]. ACS ENERGY LETTERS, 2020, 5 (05): : 1665 - 1675