Compound feature attention network with edge enhancement for low-dose CT denoising

被引:1
作者
Wang, Shubin [1 ]
Liu, Yi [1 ]
Zhang, Pengcheng [1 ]
Chen, Ping [1 ]
Li, Zhiyuan [1 ]
Yan, Rongbiao [1 ]
Li, Shu [1 ]
Hou, Ruifeng [1 ]
Gui, Zhiguo [1 ]
机构
[1] North Univ China, Sch Informat & Commun Engn, State Key Lab Dynam Testing Technol, 3 Coll Rd, Taiyuan 030051, Shanxi, Peoples R China
关键词
LDCT; edge enhancement; interactive feature learning; multi-scale feature fusion; joint attention;
D O I
10.3233/XST-230064
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
BACKGROUND: Low-dose CT (LDCT) images usually contain serious noise and artifacts, which weaken the readability of the image. OBJECTIVE: To solve this problem, we propose a compound feature attention network with edge enhancement for LDCT denoising (CFAN-Net), which consists of an edge-enhanced module and a proposed compound feature attention block (CFAB). METHODS: The edge enhancement module extracts edge details with the trainable Sobel convolution. CFAB consists of an interactive feature learning module (IFLM), a multi-scale feature fusion module (MFFM), and a joint attention module (JAB), which removes noise from LDCT images in a coarse-to-fine manner. First, in IFLM, the noise is initially removed by cross-latitude interactive judgment learning. Second, in MFFM, multi-scale and pixel attention are integrated to explore fine noise removal. Finally, in JAB, we focus on key information, extract useful features, and improve the efficiency of network learning. To construct a high-quality image, we repeat the above operation by cascading CFAB. RESULTS: By applying CFAN-Net to process the 2016 NIH AAPM-Mayo LDCT challenge test dataset, experiments show that the peak signal-to-noise ratio value is 33.9692 and the structural similarity value is 0.9198. CONCLUSIONS: Compared with several existing LDCT denoising algorithms, CFAN-Net effectively preserves the texture of CT images while removing noise and artifacts.
引用
收藏
页码:915 / 933
页数:19
相关论文
共 48 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   ViViT: A Video Vision Transformer [J].
Arnab, Anurag ;
Dehghani, Mostafa ;
Heigold, Georg ;
Sun, Chen ;
Lucic, Mario ;
Schmid, Cordelia .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :6816-6826
[3]  
Bertasius G, 2021, PR MACH LEARN RES, V139
[4]   Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network [J].
Chen, Hu ;
Zhang, Yi ;
Kalra, Mannudeep K. ;
Lin, Feng ;
Chen, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (12) :2524-2535
[5]   Low-dose CT via convolutional neural network [J].
Chen, Hu ;
Zhang, Yi ;
Zhang, Weihua ;
Liao, Peixi ;
Li, Ke ;
Zhou, Jiliu ;
Wang, Ge .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02) :679-694
[6]   Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing [J].
Chen, Yang ;
Yin, Xindao ;
Shi, Luyao ;
Shu, Huazhong ;
Luo, Limin ;
Coatrieux, Jean-Louis ;
Toumoulin, Christine .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (16) :5803-5820
[7]   MR Image Denoising and Super-Resolution Using Regularized Reverse Diffusion [J].
Chung, Hyungjin ;
Lee, Eun Sun ;
Ye, Jong Chul .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (04) :922-934
[8]   Projected Cancer Risks From Computed Tomographic Scans Performed in the United States in 2007 [J].
de Gonzalez, Amy Berrington ;
Mahesh, Mahadevappa ;
Kim, Kwang-Pyo ;
Bhargavan, Mythreyi ;
Lewis, Rebecca ;
Mettler, Fred ;
Land, Charles .
ARCHIVES OF INTERNAL MEDICINE, 2009, 169 (22) :2071-2077
[9]   Quadratic Autoencoder (Q-AE) for Low-Dose CT Denoising [J].
Fan, Fenglei ;
Shan, Hongming ;
Kalra, Mannudeep K. ;
Singh, Ramandeep ;
Qian, Guhan ;
Getzin, Matthew ;
Teng, Yueyang ;
Hahn, Juergen ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (06) :2035-2050
[10]   Block matching 3D random noise filtering for absorption optical projection tomography [J].
Fumene Feruglio, P. ;
Vinegoni, C. ;
Gros, J. ;
Sbarbati, A. ;
Weissleder, R. .
PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (18) :5401-5415