Microwave plasma-based dry reforming of methane: Reaction performance and carbon formation

被引:30
作者
Kelly, Sean [1 ,2 ]
Mercer, Elizabeth [2 ]
De Meyer, Robin [2 ,3 ]
Ciocarlan, Radu-George [4 ]
Bals, Sara [3 ]
Bogaerts, Annemie [2 ]
机构
[1] Univ Coll Dublin, Sch Biosyst & Food Engn, Dublin, Ireland
[2] Univ Antwerp, Dept Chem, Res Grp PLASMANT, B-2020 Antwerp, Belgium
[3] Univ Antwerp, Dept Phys, Res Grp EMAT, Antwerp, Belgium
[4] Univ Antwerp, Dept Chem, Res Grp LADCA, Antwerp, Belgium
基金
欧洲研究理事会;
关键词
Microwave plasma; Plasma-based gas conversion; Carbon dioxide utilisation; Dry reforming of methane; Syngas; GLIDING ARC PLASMATRON; CO2; CONVERSION; ENERGY EFFICIENCY; SYNGAS; GAS; BLACK; CH4; OXIDATION; REACTORS; TORCH;
D O I
10.1016/j.jcou.2023.102564
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigate atmospheric pressure microwave (MW) plasma (2.45 GHz) conversion in CO2 and CH4 mixtures (i.e., dry reforming of methane, DRM) focusing on reaction performance and carbon formation. Promising energy costs of similar to 2.8-3.0 eV/molecule or similar to 11.1-11.9 kJ/L are amongst the best performance to date considering the current state-of-the-art for plasma-based DRM for all types of plasma. The conversion is in the range of similar to 46-49% and similar to 55-67% for CO2 and CH4, respectively, producing primarily syngas (i.e., H-2 and CO) with H-2/CO ratios of similar to 0.6-1 at CH4 fractions ranging from 30% to 45%. Water is the largest byproduct with levels ranging similar to 7-14% in the exhaust. Carbon particles visibly impact the plasma at higher CH4 fractions (> 30%), where they become heated and incandescent. Particle luminosity increases with increasing CH4 fractions, with the plasma becoming unstable near a 1:1 mixture (i.e., > 45% CH4). Electron microscopy of the carbon material reveals an agglomerated morphology of pure carbon nanoparticles. The mean particle size is determined as similar to 20 nm, free of any metal contamination, consistent with the electrode-less MW design.
引用
收藏
页数:12
相关论文
共 107 条
[11]   Carbon dioxide dissociation in a microwave plasma reactor operating in a wide pressure range and different gas inlet configurations [J].
Belov, Igor ;
Vermeiren, Vincent ;
Paulussen, Sabine ;
Bogaerts, Annemie .
JOURNAL OF CO2 UTILIZATION, 2018, 24 :386-397
[12]  
Bera M, 2019, SPR SER POLYM COMPOS, P457, DOI 10.1007/978-981-13-2688-2_13
[13]   Modeling of CO2 Splitting in a Microwave Plasma: How to Improve the Conversion and Energy Efficiency [J].
Berthelot, Antonin ;
Bogaerts, Annemie .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (15) :8236-8251
[14]   Plasma-Chemical Production of Acetylene from Hydrocarbons: History and Current Status (A Review) [J].
Bilera, I., V ;
Lebedev, Yu A. .
PETROLEUM CHEMISTRY, 2022, 62 (04) :329-351
[15]  
Bilik V., 2002, RAD 2002 C BRAT SLOV
[16]   Anode spots of low current gliding arc plasmatron [J].
Boeddeker, Simon ;
Bracht, Vera ;
Hermanns, Patrick ;
Groeger, Sven ;
Kogelheide, Friederike ;
Bibinov, Nikita ;
Awakowicz, Peter .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2020, 29 (08)
[17]   The 2020 plasma catalysis roadmap [J].
Bogaerts, Annemie ;
Tu, Xin ;
Whitehead, J. Christopher ;
Centi, Gabriele ;
Lefferts, Leon ;
Guaitella, Olivier ;
Azzolina-Jury, Federico ;
Kim, Hyun-Ha ;
Murphy, Anthony B. ;
Schneider, William F. ;
Nozaki, Tomohiro ;
Hicks, Jason C. ;
Rousseau, Antoine ;
Thevenet, Frederic ;
Khacef, Ahmed ;
Carreon, Maria .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (44)
[18]   Plasma Technology: An Emerging Technology for Energy Storage [J].
Bogaerts, Annemie ;
Neyts, Erik C. .
ACS ENERGY LETTERS, 2018, 3 (04) :1013-1027
[19]   Plasma-driven dissociation of CO2 for fuel synthesis [J].
Bongers, Waldo ;
Bouwmeester, Henny ;
Wolf, Bram ;
Peeters, Floran ;
Welzel, Stefan ;
van den Bekerom, Dirk ;
den Harder, Niek ;
Goede, Adelbert ;
Graswinckel, Martijn ;
Groen, Pieter Willem ;
Kopecki, Jochen ;
Leins, Martina ;
van Rooij, Gerard ;
Schulz, Andreas ;
Walker, Matthias ;
van de Sanden, Richard .
PLASMA PROCESSES AND POLYMERS, 2017, 14 (06)
[20]  
Boulos MI, 2016, Handbook of thermal plasmas, P1