Spectating the proton migration on catalyst with noninnocent ligand in aqueous electrochemical CO2 reduction

被引:5
作者
Li, Yangfan [1 ,2 ]
Xie, Shijie [1 ,2 ]
Huang, Xingmiao [1 ,2 ]
Song, Wenjing [1 ,2 ]
Chen, Chuncheng [1 ,2 ]
Sheng, Hua [1 ,2 ]
Zhao, Jincai [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Key Lab Photochem, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Proton transfer; IR spectroscopy; CO2; reduction; Noninnocent ligand; Molecular complex; CARBON-DIOXIDE REDUCTION; ELECTRONIC-STRUCTURE; MOLECULAR CATALYSIS; CONVERSION; EFFICIENT; SPECTROSCOPY; PORPHYRINS; BONDS; RAMAN; DFT;
D O I
10.1016/j.apcatb.2023.122542
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is of great significance to investigate aqueous CO2 reduction on catalysts with redox-noninnocent ligands as they effectively facilitate CO2 reduction but circumvent the H-2 evolution. By developing the methodology of rapid-scan FT-IR in external reflection mode, the pathway of CO2 reduction on iron porphyrin was in-situ monitored. It's uncovered that coupled with first-electron reduction of [Fe(II)TAPP](0), the porphyrin nitrogen is protonated as the observation of NH+ ammonium band in IR spectra, which avoids the formation of Fe-H structure for proton reduction. Moreover, an inverse kinetic isotope effect (KIE = 0.59) in formation of *COOH indicates the protonated porphyrin-N would also act as a proton relay for the efficient inner-sphere proton transfer to the activated CO2 molecules. This work experimentally identified the proton migration pathway via the reduced porphyrin ligand as proton shuttle for the first time and should benefit the design of the catalyst of high CO2 reduction selectivity.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper
    Gattrell, M.
    Gupta, N.
    Co, A.
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 594 (01) : 1 - 19
  • [22] Electrochemical CO2 and Proton Reduction by a Co(dithiacyclam) Complex
    Iffland, Linda
    Siegmund, Daniel
    Apfel, Ulf-Peter
    [J]. ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2020, 646 (13): : 746 - 753
  • [23] Electrochemical CO2 Reduction on Polycrystalline Copper by Modulating Proton Transfer with Fluoropolymer Composites
    Pan, Hanqing
    Barile, Christopher J.
    [J]. ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) : 4712 - 4721
  • [24] Electrochemical reduction of CO2 using oxide based Cu and Zn bimetallic catalyst
    Dongare, Saudagar
    Singh, Neetu
    Bhunia, Haripada
    Bajpai, Pramod K.
    [J]. ELECTROCHIMICA ACTA, 2021, 392
  • [25] Electrochemical reduction of CO2 by single atom catalyst TM-TCNQ monolayers
    Liu, Jin-Hang
    Yang, Li-Ming
    Ganz, Eric
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (08) : 3805 - 3814
  • [26] Facet Sensitivity of Capping Ligand-Free Ag Crystals in CO2 Electrochemical Reduction to CO
    Yang, Min
    Zhang, Jiazhou
    Cao, Yongyong
    Wu, Minfang
    Qian, Kun
    Zhang, Zhenhua
    Liu, Hongyang
    Wang, Jianguo
    Chen, Wei
    Huang, Weixin
    [J]. CHEMCATCHEM, 2018, 10 (22) : 5128 - 5134
  • [27] Grafting amine-functionalized ligand layer on catalyst for electrochemical CO2 capture and utilization
    Liu, Zhikun
    Yan, Tao
    Shi, Han
    Pan, Hui
    Kang, Peng
    [J]. APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 343
  • [28] Ligand-Free Silver Nanoparticles for CO2 Electrocatalytic Reduction to CO
    Mattarozzi, Francesco
    Visser, Nienke
    de Rijk, Jan Willem
    Ngene, Peter
    de Jongh, Petra
    [J]. EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2022, 2022 (29)
  • [29] A Short Perspective on Electrochemical CO2 Reduction to CO
    Tarrago, Maxime
    Ye, Shengfa
    [J]. CHIMIA, 2020, 74 (06) : 478 - 482
  • [30] Polyoxometalates as electron and proton reservoir assist electrochemical CO2 reduction
    Lang, Zhongling
    Miao, Jun
    Lan, Yangchun
    Cheng, Jiaji
    Xu, Xiaoqian
    Cheng, Chun
    [J]. APL MATERIALS, 2020, 8 (12):