Intelligent Video Streaming at Network Edge: An Attention-Based Multiagent Reinforcement Learning Solution

被引:1
|
作者
Tang, Xiangdong [1 ]
Chen, Fei [1 ]
He, Yunlong [1 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
QoE; multiagent; reinforcement learning; edge computing; ALLOCATION;
D O I
10.3390/fi15070234
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Video viewing is currently the primary form of entertainment for modern people due to the rapid development of mobile devices and 5G networks. The combination of pervasive edge devices and adaptive bitrate streaming technologies can lessen the effects of network changes, boosting user quality of experience (QoE). Even while edge servers can offer near-end services to local users, it is challenging to accommodate a high number of mobile users in a dynamic environment due to their restricted capacity to maximize user long-term QoE. We are motivated to integrate user allocation and bitrate adaptation into one optimization objective and propose a multiagent reinforcement learning method combined with an attention mechanism to solve the problem of multiedge servers cooperatively serving users. Through comparative experiments, we demonstrate the superiority of our proposed solution in various network configurations. To tackle the edge user allocation problem, we proposed a method called attention-based multiagent reinforcement learning (AMARL), which optimized the problem in two directions, i.e., maximizing the QoE of users and minimizing the number of leased edge servers. The performance of AMARL is proved by experiments.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Reinforcement learning-based rate adaptation in dynamic video streaming
    Hafez, N. A.
    Hassan, M. S.
    Landolsi, T.
    TELECOMMUNICATION SYSTEMS, 2023, 83 (04) : 395 - 407
  • [22] Collaborative Video Caching in the Edge Network using Deep Reinforcement Learning
    Lekharu, Anirban
    Gupta, Pranav
    Sur, Aridit
    Patra, Moumita
    ACM TRANSACTIONS ON INTERNET OF THINGS, 2024, 5 (03):
  • [23] Reinforcement learning-based rate adaptation in dynamic video streaming
    N. A. Hafez
    M. S. Hassan
    T. Landolsi
    Telecommunication Systems, 2023, 83 : 395 - 407
  • [24] Learning-Based Joint QoE Optimization for Adaptive Video Streaming Based on Smart Edge
    Ma, Xiaoteng
    Li, Qing
    Jiang, Yong
    Muntean, Gabriel-Miro
    Zou, Longhao
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (02): : 1789 - 1806
  • [25] LiveClip: Towards Intelligent Mobile Short-Form Video Streaming with Deep Reinforcement Learning
    He, Jianchao
    Hu, Miao
    Zhou, Yipeng
    Wu, Di
    NOSSDAV '20: PROCEEDINGS OF THE 2020 WORKSHOP ON NETWORK AND OPERATING SYSTEM SUPPORT FOR DIGITAL AUDIO AND VIDEO, 2020, : 54 - 59
  • [26] Attention-based model and deep reinforcement learning for distribution of event processing tasks
    Mazayev, Andriy
    Al-Tam, Faroq
    Correia, Noelia
    INTERNET OF THINGS, 2022, 19
  • [27] ADRL: An attention-based deep reinforcement learning framework for knowledge graph reasoning
    Wang, Qi
    Hao, Yongsheng
    Cao, Jie
    KNOWLEDGE-BASED SYSTEMS, 2020, 197
  • [28] A study of multiagent reinforcement learning based on quantum theory
    Meng Xiangping
    Pi Yuzhen
    Yuan Quande
    Pan Ying
    2006 IMACS: MULTICONFERENCE ON COMPUTATIONAL ENGINEERING IN SYSTEMS APPLICATIONS, VOLS 1 AND 2, 2006, : 1990 - +
  • [29] Direct Edge-to-Edge Attention-Based Multiple Representation Latent Feature Transfer Learning
    Tsai, Yung-Chen
    Lu, Ching-Hu
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, : 1305 - 1318
  • [30] Reinforcement Learning-Based Adaptive Streaming Scheme with Edge Computing Assistance
    Kim, Minsu
    Chung, Kwangsue
    SENSORS, 2022, 22 (06)