A global meta-analysis of yield and water productivity of woody, herbaceous and vine fruits under deficit irrigation

被引:9
作者
Wen, Shenglin [1 ,2 ]
Cui, Ningbo [1 ,2 ]
Gong, Daozhi [3 ]
Liu, Chunwei [4 ]
Xing, Liwen [1 ,2 ]
Wu, Zongjun [1 ,2 ]
Wang, Zhihui [1 ,2 ]
Wang, Jiaxin [5 ]
机构
[1] Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Coll Water Resource & Hydropower, Chengdu 610065, Peoples R China
[3] Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Beijing 100081, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Jiangsu Key Lab Agr Meteorol, Nanjing 210044, Peoples R China
[5] McGill Univ, Dept Bioresource Engn, Sainte Anne De Bellevue, PQ, Canada
基金
中国国家自然科学基金;
关键词
Deficit irrigation; Yield; Water productivity; Woody fruits; Herbaceous fruits; Vine fruits; USE EFFICIENCY; LOESS PLATEAU; CITRUS TREES; APPLE-TREES; QUALITY; NITROGEN; GROWTH; JUJUBE; MANAGEMENT; CHINA;
D O I
10.1016/j.agwat.2023.108412
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Deficit irrigation (DI) is widely recognized as an irrigation method to save water and increase/maintain yield. The objective of this study was to evaluate the effects of DI on yield and water productivity (WP, the ratio of yield divided by evapotranspiration (ET)) of woody fruits (apple, citrus, pear, peach), herbaceous fruits (strawberry, watermelon) and vine fruit (grape), and to identify the optimal irrigation management strategy for different fruit species groups. For this, we conducted a comprehensive meta-analysis with 591 observations from 56 peerreviewed papers. Results showed that DI reduced the yield of woody, herbaceous, and vine fruits by 13.74%, 20.51%, and 9.03%, and increased WP by 13.34%, - 2.08%, and 9.89% compared with full irrigation (FI), respectively. Herbaceous fruits were more vulnerable to yield reduction than woody and vine fruits under DI. As for woody fruits, compared with FI, low degree (80%-100% irrigation amount of FI) DI performed better, increasing yield and WP by 0.87% and 9.77%. Woody fruits are suitable for DI in stage I and stage II (bud burst to leafing stage and flowering to fruit set stage), which can reduce the risk of yield reduction and significantly increase WP by 1.86%- 9.28%. Among irrigation methods, surge-root irrigation and sprinkler irrigation under DI performed better for woody fruits, increasing yield and WP by 1.81% and 11.89%, - 5.85% and 43.91%, respectively. In terms of herbaceous fruits, compared with FI, mild degree (60%-80% FI) DI declined the risk of yield reduction and significantly increased WP by 2.25%. DI at stage IV (fruit maturation stage) performed better, which can decrease the risk of herbaceous fruit yield reduction and improve WP by 0.37%. Among irrigation methods, furrow irrigation under DI performed better for herbaceous fruits, increasing yield and WP by - 0.66% and 2.29%. In terms of vine fruits, compared with FI, moderate degree (40%-60% FI) DI performed better, which can significantly increase yield and WP by - 8.05% and 13.87%. Vine fruits are suitable for DI in stage I, increasing yield and WP by 5.38% and 22.13%. For woody fruits, DI is suitable for higher seasonal precipitation (SP > 400 mm) and annual average temperature (AAT & GE; 10 & DEG;C). In contrast, for vine fruits and herbaceous fruits, DI is suitable for lower SP (< 200 mm) and AAT (< 10 & DEG;C). Our findings provide guidance for precise water deficit management of woody, herbaceous, and vine fruits.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Crop yield and water use efficiency under aerated irrigation: A meta-analysis
    Du, Ya-Dan
    Niu, Wen-Quan
    Gu, Xiao-Bo
    Zhang, Qian
    Cui, Bing-Jing
    Zhao, Ying
    AGRICULTURAL WATER MANAGEMENT, 2018, 210 : 158 - 164
  • [32] Grain yield and water productivity of maize under deficit irrigation and salt stress: Evidences from field experiment and literatures
    Gao, Jia
    Li, Lin
    Ding, Risheng
    Kang, Shaozhong
    Du, Taisheng
    Tong, Ling
    Kang, Jian
    Xu, Wanli
    Tang, Guangmu
    AGRICULTURAL WATER MANAGEMENT, 2025, 307
  • [33] Effect of deficit irrigation on yield and water productivity of sunflower in East and South-eastern coastal plains of Odisha
    Sahu, P. K.
    Sahu, A. P.
    Brahmanand, P. S.
    Panigrahi, B.
    Das, D. M.
    Sahoo, B. C.
    Swain, D. K.
    JOURNAL OF ENVIRONMENTAL BIOLOGY, 2021, 42 (04) : 1062 - 1069
  • [34] Deficit irrigation enhances yield and water productivity of apples by inhibiting excessive vegetative growth and improving photosynthetic performance
    Wen, Shenglin
    Cui, Ningbo
    Wang, Yaosheng
    Gong, Daozhi
    Xing, Liwen
    Wu, Zongjun
    Zhang, Yixuan
    Wang, Zhihui
    AGRICULTURAL WATER MANAGEMENT, 2025, 307
  • [35] Water productivity of irrigated maize production systems in Northern China: A meta-analysis
    Zheng, Huifang
    Shao, Ruixin
    Xue, Yanfang
    Ying, Hao
    Yin, Yulong
    Cui, Zhenling
    Yang, QingHua
    AGRICULTURAL WATER MANAGEMENT, 2020, 234
  • [36] CUMULATIVE DEFICIT IRRIGATION AND NITROGEN EFFECTS ON SOIL WATER TRENDS, EVAPOTRANSPIRATION, AND DRY MATTER AND GRAIN YIELD OF CORN UNDER HIGH FREQUENCY SPRINKLER IRRIGATION
    King, Bradley A.
    Tarkalson, David D.
    Bjorneberg, David L.
    APPLIED ENGINEERING IN AGRICULTURE, 2022, 38 (04) : 669 - 683
  • [37] Promising Bioregulators for Higher Water Productivity and Oil Quality of Chia under Deficit Irrigation in Semiarid Regions
    Harisha, Chowdasandra Byregowda
    Narayanpur, Vijaykumar B.
    Rane, Jagadish
    Ganiger, Vasant M.
    Prasanna, Sugooru M.
    Vishwanath, Yeragenahalli Chandrashekaharappa
    Reddi, Sanjeevraddi G.
    Halli, Hanamant M.
    Boraiah, Karnar Manjanna
    Basavaraj, Patil Siddanagouda
    Mahmoud, Eman A.
    Casini, Ryan
    Elansary, Hosam O.
    PLANTS-BASEL, 2023, 12 (03):
  • [38] Water productivity and yield characteristics of transplanted rice in puddled soil under drip tape irrigation
    Nabipour, Ramtin
    Yazdani, Mohammad Reza
    Mirzaei, Farhad
    Ebrahimian, Hamed
    Mobaraki, Fatemeh Alipour
    AGRICULTURAL WATER MANAGEMENT, 2024, 295
  • [39] Effect of two types of irrigation on growth, yield and water productivity of maize under different irrigation treatments in an arid environment†
    Rasool, Ghulam
    Guo, Xiangping
    Wang, Zhenchang
    Ullah, Ikram
    Chen, Sheng
    IRRIGATION AND DRAINAGE, 2020, 69 (04) : 732 - 742
  • [40] Yield response, water productivity, and seasonal water production functions for maize under deficit irrigation water management in southern Taiwan
    Greaves, Geneille E.
    Wang, Yu-Min
    PLANT PRODUCTION SCIENCE, 2017, 20 (04) : 353 - 365