QUANTITATIVE ALEXANDROV THEOREM AND ASYMPTOTIC BEHAVIOR OF THE VOLUME PRESERVING MEAN CURVATURE FLOW
被引:4
|
作者:
Julin, Vesa
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, FinlandUniv Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
Julin, Vesa
[1
]
Niinikoski, Joonas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, FinlandUniv Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
Niinikoski, Joonas
[1
]
机构:
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
来源:
ANALYSIS & PDE
|
2023年
/
16卷
/
03期
基金:
芬兰科学院;
关键词:
mean curvature flow;
large time behavior;
constant mean curvature;
minimizing movements;
IMPLICIT TIME DISCRETIZATION;
SUBMANIFOLDS;
SETS;
D O I:
10.2140/apde.2023.16.679
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We prove a new quantitative version of the Alexandrov theorem which states that if the mean curvature of a regular set in Rn+1 is close to a constant in the Ln sense, then the set is close to a union of disjoint balls with respect to the Hausdorff distance. This result is more general than the previous quantifications of the Alexandrov theorem, and using it we are able to show that in R2 and R3 a weak solution of the volume preserving mean curvature flow starting from a set of finite perimeter asymptotically convergences to a disjoint union of equisize balls, up to possible translations. Here by a weak solution we mean a flat flow, obtained via the minimizing movements scheme.
机构:
Univ Napoli Federico II, Dipartimento Matemat & Applicaz, Naples, ItalyUniv Napoli Federico II, Dipartimento Matemat & Applicaz, Naples, Italy
Fusco, Nicola
Julin, Vesa
论文数: 0引用数: 0
h-index: 0
机构:
Jyvaskylan Yliopisto, Matematiikan Ja Tilastotieteen Laitos, Jyvaskyla, FinlandUniv Napoli Federico II, Dipartimento Matemat & Applicaz, Naples, Italy
Julin, Vesa
Morini, Massimiliano
论文数: 0引用数: 0
h-index: 0
机构:
Univ Parma, Dipartimento Sci Matemat Fis & Informat, Parma, ItalyUniv Napoli Federico II, Dipartimento Matemat & Applicaz, Naples, Italy