The Chen type of Hasimoto surfaces in the Euclidean 3-space

被引:3
|
作者
Al-Zoubi, Hassan [1 ]
Senoussi, Bendehiba [2 ]
Al-Sabbagh, Mutaz [3 ]
Ozdemir, Mehmet [3 ]
机构
[1] Al Zaytoonah Univ Jordan, Dept Math, POB 130, Amman 11733, Jordan
[2] Ecole Normale Super, Dept Math, 45 Rue Ulm, Mostaganem 75230, Algeria
[3] Imam Abdulrahman Bin Faisal Univ, Dept Basic Engn Sci, Dammam 31441, Saudi Arabia
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 07期
关键词
Hasimoto surface; Gauss map; Euclidean space; Beltrami-Laplace operator; surfaces of  finite type;
D O I
10.3934/math.2023819
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A surface M2 with position vector r = r(s, t) is called a Hasimoto surface if the relation rt = rs perpendicular to rss holds. In this paper, we first define the Beltrami-Laplace operator according to the three fundamental forms of the surface, then we classify the J-harmonic Hasimoto surfaces and their Gauss map in E3, for J = II and III.
引用
收藏
页码:16062 / 16072
页数:11
相关论文
共 50 条
  • [1] ON THE HASIMOTO SURFACES IN EUCLIDEAN 3-SPACE
    Kaymanli, Gul Ugur
    Ekici, Cumali
    Kocak, Mahmut
    JOURNAL OF SCIENCE AND ARTS, 2022, (04): : 883 - 890
  • [2] Geometry of Hasimoto Surfaces in Minkowski 3-Space
    Erdogdu, Melek
    Ozdemir, Mustafa
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2014, 17 (1-2) : 169 - 181
  • [3] Geometry of Hasimoto Surfaces in Minkowski 3-Space
    Melek Erdoğdu
    Mustafa Özdemir
    Mathematical Physics, Analysis and Geometry, 2014, 17 : 169 - 181
  • [4] Generalized Hasimoto-type surfaces of null growth in Minkowski 3-space
    Qian, Jinhua
    Li, Yawen
    Fu, Xueshan
    MATHEMATISCHE ANNALEN, 2024, 389 (01) : 187 - 208
  • [5] Generalized Hasimoto-type surfaces of null growth in Minkowski 3-space
    Jinhua Qian
    Yawen Li
    Xueshan Fu
    Mathematische Annalen, 2024, 389 : 187 - 208
  • [6] EMBEDDINGS OF SURFACES IN EUCLIDEAN 3-SPACE
    BURGESS, CE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (07): : A629 - A629
  • [7] PARALLEL SURFACES TO TRANSLATION SURFACES IN EUCLIDEAN 3-SPACE
    Cetin, Muhammed
    Tuncer, Yilmaz
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2015, 64 (02): : 47 - 54
  • [8] Hasimoto surfaces for two classes of curve evolution in Minkowski 3-space
    Gurbuz, Nevin
    Yoon, Dae Won
    DEMONSTRATIO MATHEMATICA, 2020, 53 (01) : 277 - 284
  • [9] A Note on Minimal Surfaces in Euclidean 3-Space
    Zu Huan Yu
    Qing Zhong Li
    Acta Mathematica Sinica, English Series, 2007, 23 : 2079 - 2086
  • [10] On the spinor representation of surfaces in Euclidean 3-space
    Friedrich, T
    JOURNAL OF GEOMETRY AND PHYSICS, 1998, 28 (1-2) : 143 - 157