Machine-Learning-Based Classification for Pipeline Corrosion with Monte Carlo Probabilistic Analysis

被引:5
作者
Ismail, Mohd Fadly Hisham [1 ]
May, Zazilah [1 ,2 ]
Asirvadam, Vijanth Sagayan [1 ]
Nayan, Nazrul Anuar [2 ,3 ]
机构
[1] Univ Teknol PETRONAS, Elect & Elect Engn Dept, Seri Iskandar 32610, Perak, Malaysia
[2] Univ Kebangsaan Malaysia, Fac Engn & Built Environm, Dept Elect Elect & Syst Engn, Bangi 43600, Selangor, Malaysia
[3] Univ Kebangsaan Malaysia, Inst Islam Hadhari, Bangi 43600, Selangor, Malaysia
关键词
pipeline corrosion; in-line inspection; machine learning; reliability analysis; SIGNALS; WAVELETS;
D O I
10.3390/en16083589
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Pipeline corrosion is one of the leading causes of failures in the transmission of gas and hazardous liquids in the oil and gas industry. In-line inspection is a non-destructive inspection for detecting corrosion defects in pipelines. Defects are measured in terms of their width, length and depth. Consecutive in-line inspection data are used to determine the pipeline's corrosion growth rate and its remnant life, which set the operational and maintenance activities of the pipeline. The traditional approach of manually processing in-line inspection data has various weaknesses, including being time consuming due to huge data volume and complexity, prone to error, subject to biased judgement by experts and challenging for matching of in-line inspection datasets. This paper aimed to contribute to the adoption of machine learning approaches in classifying pipeline defects as per Pipeline Operator Forum requirements and matching in-line inspection data for determining the corrosion growth rate and remnant life of pipelines. Machine learning techniques, namely, decision tree, random forest, support vector machines and logistic regression, were applied in the classification of pipeline defects using Phyton programming. The performance of each technique in terms of the accuracy of results was compared. The results showed that the decision tree classifier model was the most accurate (99.9%) compared with the other classifiers.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Efficient probabilistic back analysis of geotechnical engineering based on variational Bayesian Monte Carlo
    Xing, Baoying
    Gong, Wenping
    Li, Zhengwei
    Li, Zhibin
    Li, Xinxin
    GEORISK-ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS, 2025,
  • [42] Machine-Learning-Based No Show Prediction in Outpatient Visits
    Elvira, C.
    Ochoa, A.
    Gonzalvez, J. C.
    Mochon, F.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2018, 4 (07): : 29 - 34
  • [43] A Machine-Learning-Based Detection Method for Snoring and Coughing
    Yang, Chun-Hung
    Kuo, Yung-Ming
    Chen, I-Chun
    Lin, Fan-Min
    Chung, Pau-Choo
    JOURNAL OF INTERNET TECHNOLOGY, 2022, 23 (06): : 1233 - 1244
  • [44] Probabilistic-based analysis of a shallow square footing using Monte Carlo simulation
    Shakir, Ressol R.
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2019, 22 (01): : 313 - 333
  • [45] Tools for machine-learning-based empirical autotuning and specialization
    Chaimov, Nicholas
    Biersdorff, Scott
    Malony, Allen D.
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2013, 27 (04) : 403 - 411
  • [46] Machine-Learning-Based Lightpath QoT Estimation and Forecasting
    Allogba, Stephanie
    Aladin, Sandra
    Tremblay, Christine
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (10) : 3115 - 3127
  • [47] Machine-learning-based interatomic potentials for advanced manufacturing
    Yu, Wei
    Ji, Chaoyue
    Wan, Xuhao
    Zhang, Zhaofu
    Robertson, John
    Liu, Sheng
    Guo, Yuzheng
    INTERNATIONAL JOURNAL OF MECHANICAL SYSTEM DYNAMICS, 2021, 1 (02): : 159 - 172
  • [48] piRNA in Machine-Learning-Based Diagnostics of Colorectal Cancer
    Li, Sienna
    Kouznetsova, Valentina L.
    Kesari, Santosh
    Tsigelny, Igor F.
    MOLECULES, 2024, 29 (18):
  • [49] Kinetic Monte Carlo modeling of the interface heterogeneous catalysis effect based on machine learning
    Li, Qin
    Wang, Ziyi
    Yang, Xiao Feng
    Dong, Wei
    Liu, Lei
    Du, Yan Xia
    Gui, Ye Wei
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2022, 52 (12)
  • [50] Machine Learning-Based Denoising Techniques for Monte Carlo Rendering: A Literature Review
    Yen, Liew Wen
    Thinakaran, Rajermani
    Somasekar, J.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2025, 16 (02) : 581 - 588