Machine-Learning-Based Classification for Pipeline Corrosion with Monte Carlo Probabilistic Analysis

被引:5
作者
Ismail, Mohd Fadly Hisham [1 ]
May, Zazilah [1 ,2 ]
Asirvadam, Vijanth Sagayan [1 ]
Nayan, Nazrul Anuar [2 ,3 ]
机构
[1] Univ Teknol PETRONAS, Elect & Elect Engn Dept, Seri Iskandar 32610, Perak, Malaysia
[2] Univ Kebangsaan Malaysia, Fac Engn & Built Environm, Dept Elect Elect & Syst Engn, Bangi 43600, Selangor, Malaysia
[3] Univ Kebangsaan Malaysia, Inst Islam Hadhari, Bangi 43600, Selangor, Malaysia
关键词
pipeline corrosion; in-line inspection; machine learning; reliability analysis; SIGNALS; WAVELETS;
D O I
10.3390/en16083589
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Pipeline corrosion is one of the leading causes of failures in the transmission of gas and hazardous liquids in the oil and gas industry. In-line inspection is a non-destructive inspection for detecting corrosion defects in pipelines. Defects are measured in terms of their width, length and depth. Consecutive in-line inspection data are used to determine the pipeline's corrosion growth rate and its remnant life, which set the operational and maintenance activities of the pipeline. The traditional approach of manually processing in-line inspection data has various weaknesses, including being time consuming due to huge data volume and complexity, prone to error, subject to biased judgement by experts and challenging for matching of in-line inspection datasets. This paper aimed to contribute to the adoption of machine learning approaches in classifying pipeline defects as per Pipeline Operator Forum requirements and matching in-line inspection data for determining the corrosion growth rate and remnant life of pipelines. Machine learning techniques, namely, decision tree, random forest, support vector machines and logistic regression, were applied in the classification of pipeline defects using Phyton programming. The performance of each technique in terms of the accuracy of results was compared. The results showed that the decision tree classifier model was the most accurate (99.9%) compared with the other classifiers.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Probabilistic machine learning for breast cancer classification
    Leventi-Peetz, Anastasia -Maria
    Weber, Kai
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (01) : 624 - 655
  • [32] Machine-learning-based diagnostics of EEG pathology
    Gemein, Lukas A. W.
    Schirrmeister, Robin T.
    Chrabaszcz, Patryk
    Wilson, Daniel
    Boedecker, Joschka
    Schulze-Bonhage, Andreas
    Hutter, Frank
    Ball, Tonio
    NEUROIMAGE, 2020, 220
  • [33] A machine-learning-based prediction method for easy COPD classification based on pulse oximetry clinical use
    Abineza, Claudia
    Balas, Valentina E.
    Nsengiyumva, Philibert
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (02) : 1683 - 1695
  • [34] Machine-learning-based diabetes classification method using blood flow oscillations and Pearson correlation analysis of feature importance
    Jung, Hanbeen
    Yeo, Chaebeom
    Jang, Eunsil
    Chang, Yeonhee
    Song, Cheol
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (04):
  • [35] Machine-Learning-Based Approach for Virtual Machine Allocation and Migration
    Talwani, Suruchi
    Singla, Jimmy
    Mathur, Gauri
    Malik, Navneet
    Jhanjhi, N. Z.
    Masud, Mehedi
    Aljahdali, Sultan
    ELECTRONICS, 2022, 11 (19)
  • [36] Machine-Learning-Based Model Parameter Identification for Cutting Force Estimation
    Kouguchi, Junichi
    Tajima, Shingo
    Yoshioka, Hayato
    INTERNATIONAL JOURNAL OF AUTOMATION TECHNOLOGY, 2024, 18 (01) : 26 - 38
  • [37] Machine-Learning-Based User Position Prediction and Behavior Analysis for Location Services
    Jiang, Haiyang
    He, Mingshu
    Xi, Yuanyuan
    Zeng, Jianqiu
    INFORMATION, 2021, 12 (05)
  • [38] Analysis and machine-learning-based prediction of beach accidents on a recreational beach in China
    Yuan Li
    Jialin Tang
    Chi Zhang
    Qinyi Li
    Shanhang Chi
    Yao Zhang
    Hongshuai Qi
    Chuang Zhang
    Anthropocene Coasts, 7 (1)
  • [39] Machine-Learning-Based Android Malware Family Classification Using Built-In and Custom Permissions
    Kim, Minki
    Kim, Daehan
    Hwang, Changha
    Cho, Seongje
    Han, Sangchul
    Park, Minkyu
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [40] Machine-Learning-Based Digital Twin in Manufacturing: A Bibliometric Analysis and Evolutionary Overview
    Sheuly, Sharmin Sultana
    Ahmed, Mobyen Uddin
    Begum, Shahina
    APPLIED SCIENCES-BASEL, 2022, 12 (13):