Implementing Hand Gesture Recognition Using EMG on the Zynq Circuit

被引:12
作者
Kerdjidj, O. [1 ,2 ]
Amara, K. [1 ]
Harizi, F. [1 ]
Boumridja, H. [3 ]
机构
[1] Ctr Dev Adv Technol, Algiers 16303, Algeria
[2] Univ Dubai, Coll Engn & Informat Technol, Dubai, U Arab Emirates
[3] Univ Boumerdes, Dept Elect, Boumerdes 35000, Algeria
关键词
Electromagnography (EMG) signal; hand gesture classification; hardware implementation; healthcare; Vivado HLS; SURFACE EMG; SYSTEM;
D O I
10.1109/JSEN.2023.3259150
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a hardware design of hand gesture recognition and its implementation on the Zynq platform (XC7Z020) of Xilinx. This proposed system is aimed to be embedded on the robotic prosthesis to improve the daily livings upper-limb amputees. Specifically, we design an architecture to identify hand movements using the Vivado HLS tool by exploiting the electromyography signal. The proposed architecture consists of creating two necessary intellectual properties (IPs) on hardware designed, tested, and validated against the software implementation. The first one performs feature extraction from the electromagnography (EMG) signal, and the second one implements the classification using the k-nearest neighbor (k-NN) algorithm. Our framework process EMG signals acquired using an myo sensor with eight channels. The optimization of our design using pipeline directive achieves speed improvements of 5x and 2.15x for the feature extraction and predict IPs, respectively, with moderate area resource consumption and the same performance as software implementation.
引用
收藏
页码:10054 / 10061
页数:8
相关论文
共 39 条
  • [31] Electromyography-Based Hand Gesture Recognition System for Upper Limb Amputees
    Pancholi, Sidharth
    Joshi, Amit M.
    [J]. IEEE SENSORS LETTERS, 2019, 3 (03)
  • [32] Real-Time EMG Based Pattern Recognition Control for Hand Prostheses: A Review on Existing Methods, Challenges and Future Implementation
    Parajuli, Nawadita
    Sreenivasan, Neethu
    Bifulco, Paolo
    Cesarelli, Mario
    Savino, Sergio
    Niola, Vincenzo
    Esposito, Daniele
    Hamilton, Tara J.
    Naik, Ganesh R.
    Gunawardana, Upul
    Gargiulo, Gaetano D.
    [J]. SENSORS, 2019, 19 (20)
  • [33] Raurale S, 2019, INT CONF ACOUST SPEE, P1523, DOI 10.1109/ICASSP.2019.8683104
  • [34] Stapornchaisit S., 2018, Journal of Physics: Conference Series, V1065, DOI 10.1088/1742-6596/1065/18/182001
  • [35] Intuitive real-time control strategy for high-density myoelectric hand prosthesis using deep and transfer learning
    Tam, Simon
    Boukadoum, Mounir
    Campeau-Lecours, Alexandre
    Gosselin, Benoit
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [36] Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks
    Trigili, Emilio
    Grazi, Lorenzo
    Crea, Simona
    Accogli, Alessandro
    Carpaneto, Jacopo
    Micera, Silvestro
    Vitiello, Nicola
    Panarese, Alessandro
    [J]. JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2019, 16 (1)
  • [37] Tsinganos P., 2018, PROC 5 INT C PHYSIOL, P1
  • [38] Real-Time Artifact Removal System for Surface EMG Processing During Ten-Fold Frequency Electrical Stimulation
    Wang, Hai-Peng
    Bi, Zheng-Yang
    Fan, Wen-Jie
    Zhou, Yi-Xin
    Zhou, Yu-Xuan
    Li, Fei
    Wang, Keping
    Lu, Xiao-Ying
    Wang, Zhi-Gong
    [J]. IEEE ACCESS, 2021, 9 : 68320 - 68331
  • [39] Clinical evaluation of the revolutionizing prosthetics modular prosthetic limb system for upper extremity amputees
    Yu, Kristin E.
    Perry, Briana N.
    Moran, Courtney W.
    Armiger, Robert S.
    Johannes, Matthew S.
    Hawkins, Abigail
    Stentz, Lauren
    Vandersea, Jamie
    Tsao, Jack W.
    Pasquina, Paul F.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)