Implementing Hand Gesture Recognition Using EMG on the Zynq Circuit

被引:12
作者
Kerdjidj, O. [1 ,2 ]
Amara, K. [1 ]
Harizi, F. [1 ]
Boumridja, H. [3 ]
机构
[1] Ctr Dev Adv Technol, Algiers 16303, Algeria
[2] Univ Dubai, Coll Engn & Informat Technol, Dubai, U Arab Emirates
[3] Univ Boumerdes, Dept Elect, Boumerdes 35000, Algeria
关键词
Electromagnography (EMG) signal; hand gesture classification; hardware implementation; healthcare; Vivado HLS; SURFACE EMG; SYSTEM;
D O I
10.1109/JSEN.2023.3259150
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a hardware design of hand gesture recognition and its implementation on the Zynq platform (XC7Z020) of Xilinx. This proposed system is aimed to be embedded on the robotic prosthesis to improve the daily livings upper-limb amputees. Specifically, we design an architecture to identify hand movements using the Vivado HLS tool by exploiting the electromyography signal. The proposed architecture consists of creating two necessary intellectual properties (IPs) on hardware designed, tested, and validated against the software implementation. The first one performs feature extraction from the electromagnography (EMG) signal, and the second one implements the classification using the k-nearest neighbor (k-NN) algorithm. Our framework process EMG signals acquired using an myo sensor with eight channels. The optimization of our design using pipeline directive achieves speed improvements of 5x and 2.15x for the feature extraction and predict IPs, respectively, with moderate area resource consumption and the same performance as software implementation.
引用
收藏
页码:10054 / 10061
页数:8
相关论文
共 39 条
  • [1] Online Finger Control Using High-Density EMG and Minimal Training Data for Robotic Applications
    Barsotti, Michele
    Dupan, Sigrid
    Vujaklija, Ivan
    Dosen, Strahinja
    Frisoli, Antonio
    Farina, Dario
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02) : 217 - 223
  • [2] Benalcazar Marco E., 2017, 2017 IEEE 2 ECUADOR
  • [3] A Versatile Embedded Platform for EMG Acquisition and Gesture Recognition
    Benatti, Simone
    Casamassima, Filippo
    Milosevic, Bojan
    Farella, Elisabetta
    Schoenle, Philipp
    Fateh, Schekeb
    Burger, Thomas
    Huang, Qiuting
    Benini, Luca
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2015, 9 (05) : 620 - 630
  • [4] Boschmann Alexander, 2015, 2015 International Conference on Reconfigurable Computing and FPGAs (ReConFig), P1, DOI 10.1109/ReConFig.2015.7393312
  • [5] Zynq-based acceleration of robust high density myoelectric signal processing
    Boschmann, Alexander
    Agne, Andreas
    Thombansen, Georg
    Witschen, Linus
    Kraus, Florian
    Platzner, Marco
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2019, 123 : 77 - 89
  • [6] Boschmann A, 2017, DES AUT TEST EUROPE, P1002, DOI 10.23919/DATE.2017.7927137
  • [7] k-NN-based EMG recognition for gestures communication with limited hardware resources
    Carlos, Cedeno Z.
    Cordova-Garcia, Jose
    Victor, Asanza A.
    Ronald, Ponguillo, I
    Leonardo, Munoz M.
    [J]. 2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 812 - 817
  • [8] SoC-based Architecture for Robotic Prosthetics Control using Surface Electromyography
    Chen, Xu
    Ke, Ang
    Ma, Xuan
    He, Jiping
    [J]. 2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL. 1, 2016, : 134 - 137
  • [9] Extraction of Nonlinear Synergies for Proportional and Simultaneous Estimation of Finger Kinematics
    Dwivedi, Sanjay Kumar
    Ngeo, Jimson
    Shibata, Tomohiro
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (09) : 2646 - 2658
  • [10] FPGA-based reservoir computing system for ECG denoising
    Elbedwehy, Aya N.
    El-Mohandes, Awny M.
    Elnakib, Ahmed
    Abou-Elsoud, Mohy Eldin
    [J]. MICROPROCESSORS AND MICROSYSTEMS, 2022, 91