Techno-economic assessment of biomass and coal co-fueled chemical looping combustion unit integrated with supercritical CO2 cycle and Organic Rankine cycle

被引:18
作者
Farajollahi, Hossein [1 ]
Hossainpour, Siamak [1 ,2 ]
机构
[1] Sahand Univ Technol, Fac Mech Engn, Tabriz, Iran
[2] POB 51325-1996, Tabriz, Iran
关键词
CO2; capture; CLC; Biomass; SupercriticalCO2; cycle; ORC; Economic analysis; SOLID FUELS; POWER-GENERATION; DESIGN; CAPTURE; REACTOR; ELECTRICITY; OPERATION; PLANT; CLC;
D O I
10.1016/j.energy.2023.127309
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study evaluates the effect of co-combustion of woody biomass and coal on the techno-economic performance of a 300 MWth in-situ gasification chemical looping combustion power plant. The circulating fluidized bed reactor system was designed and a modified macroscopic model was applied to predict the fuel conversion and the CO2 capture efficiency. The supercritical CO2 cycle and the Organic Rankine cycle were integrated with the heat sources for power generation. The results showed that increasing biomass share in the input thermal power, in addition to enhancing the CO2 capture efficiency, improves the coal conversion. Moreover, negative CO2 emissions are achieved as the biomass share exceeds 50 MWth. The net electrical efficiency of the plant is about 43.89% and grows slightly for higher biomass shares. For biomass share of 150 MWth, the CO2 capture efficiency increases from 79.27% to 90.87%. Also, the levelized cost of electricity (LCOE) rises by 15.9%-108.262 $/MWh due to higher biomass price. Despite this increased fuel cost, the LCOE is still lower than that value for the coal-fired power plant with conventional CO2 capture technology. Biomass utilization becomes more cost-effective than coal if the carbon tax is above 30 $/tCO2.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Techno-economic optimization of a biomass gasification energy system with Supercritical CO2 cycle for hydrogen fuel and electricity production
    Soltani, Mohammad Mohsen
    Ahmadi, Pouria
    Ashjaee, Mehdi
    FUEL, 2023, 333
  • [22] Techno-economic assessment of retrofitting indirect-heated calcium looping using coal and biomass as fuels into an existing cement plant for CO2 capture
    Yin, Junjun
    Li, Chao'en
    Paicu, Gabriel
    Su, Shi
    GAS SCIENCE AND ENGINEERING, 2024, 123
  • [23] Biomass combustion with CO2 capture by chemical looping with oxygen uncoupling (CLOU)
    Adanez-Rubio, I.
    Abad, A.
    Gayan, P.
    de Diego, L. F.
    Garcia-Labiano, F.
    Adanez, J.
    FUEL PROCESSING TECHNOLOGY, 2014, 124 : 104 - 114
  • [24] Life cycle assessment of power-to-methane systems with CO2 supplied by the chemical looping combustion of biomass
    Navajas, Alberto
    Mendiara, Teresa
    Gandia, Luis M.
    Abad, Alberto
    Garcia-Labiano, Francisco
    de Diego, Luis F.
    ENERGY CONVERSION AND MANAGEMENT, 2022, 267
  • [25] Use of Chemical-Looping processes for coal combustion with CO2 capture
    Adanez, J.
    Gayan, P.
    Adanez-Rubio, I.
    Cuadrat, A.
    Mendiara, T.
    Abad, A.
    Garcia-Labiano, F.
    de Diego, L. F.
    GHGT-11, 2013, 37 : 540 - 549
  • [26] Thermodynamic assessment of combined supercritical CO2 cycle power systems with organic Rankine cycle or Kalina cycle
    Zhu, Huaitao
    Xie, Gongnan
    Yuan, Han
    Nizetic, Sandro
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 52
  • [27] Closing the Carbon Cycle in Plasma-Based CO2 Splitting - A Techno-Economic Perspective
    Kaufmann, Samuel Jaro
    Roessner, Paul
    Birke, Kai Peter
    CHEMIE INGENIEUR TECHNIK, 2025,
  • [28] Techno-economic assessment of hydrogen selective membranes for CO2 capture in integrated gasification combined cycle
    Gazzani, Matteo
    Turi, Davide Maria
    Manzolini, Giampaolo
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2014, 20 : 293 - 309
  • [29] Exergy Analysis of a Syngas-Fueled Combined Cycle with Chemical-Looping Combustion and CO2 Sequestration
    Urdiales Montesino, Alvaro
    Jimenez Alvaro, Angel
    Rodriguez Martin, Javier
    Nieto Carlier, Rafael
    ENTROPY, 2016, 18 (09):
  • [30] Process modeling, techno-economic assessment, and life cycle assessment of the electrochemical reduction of CO2: a review
    Somoza-Tornos, Ana
    Guerra, Omar J.
    Crow, Allison M.
    Smith, Wilson A.
    Hodge, Bri-Mathias
    ISCIENCE, 2021, 24 (07)