Asymptotic behavior of maximum likelihood estimators for Ornstein-Uhlenbeck process with large linear drift

被引:0
|
作者
Zhang, Xuekang [1 ,2 ]
机构
[1] Anhui Polytech Univ, Sch Math Phys & Finance, Wuhu 241000, Peoples R China
[2] Anhui Polytech Univ, Key Lab Adv Percept & Intelligent Control High End, Minist Educ, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
Maximum likelihood estimators; Ornstein-Uhlenbeck process; large linear drift; law of iterated logarithm; consistency; asymptotic distributions; SHARP LARGE DEVIATIONS; PARAMETERS;
D O I
10.1142/S0219493723500247
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the asymptotic behavior of maximum likelihood estimators for Ornstein-Uhlenbeck process with large linear drift dX(t) = -1/epsilon (theta X-t - epsilon(1/2) nu)dt + dB(t), 0 <= t <= T, where theta, nu is an element of R, and { B-t }(t >= 0) is a given standard Brownian motion. The law of iterated logarithm, consistency and asymptotic distributions of the estimators are discussed based on the continuous observation {X-t}(t is an element of[0,T]) as epsilon -> 0.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] PRECISE LARGE DEVIATIONS FOR ORNSTEIN-UHLENBECK PROCESSES
    Yang, Xiangfeng
    KODAI MATHEMATICAL JOURNAL, 2013, 36 (03) : 527 - 535
  • [42] Parameter identification for the Hermite Ornstein-Uhlenbeck process
    Assaad, Obayda
    Tudor, Ciprian A.
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (02) : 251 - 270
  • [43] Survival Models Based on the Ornstein-Uhlenbeck Process
    Odd O. Aalen
    Håkon K. Gjessing
    Lifetime Data Analysis, 2004, 10 : 407 - 423
  • [44] Time-changed Ornstein-Uhlenbeck process
    Gajda, Janusz
    Wylomanska, Agnieszka
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (13)
  • [45] Exact solution for the Anisotropic Ornstein-Uhlenbeck process
    de Almeida, Rita M. C.
    Giardini, Guilherme S. Y.
    Vainstein, Mendeli
    Glazier, James A.
    Thomas, Gilberto L.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 587
  • [46] New statistical investigations of the Ornstein-Uhlenbeck process
    Arató, M
    Fegyverneki, S
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (5-6) : 677 - 692
  • [47] A set-indexed Ornstein-Uhlenbeck process
    Balanca, Paul
    Herbin, Erick
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 14
  • [48] On large deviation expansion for log-likelihood ratio of non-homogeneous Ornstein-Uhlenbeck processes
    Zhao, Shoujiang
    Zhou, Qianqian
    STATISTICS & PROBABILITY LETTERS, 2019, 155
  • [49] Self-normalized asymptotic properties for the parameter estimation in fractional Ornstein-Uhlenbeck process
    Jiang, Hui
    Liu, Junfeng
    Wang, Shaochen
    STOCHASTICS AND DYNAMICS, 2019, 19 (03)
  • [50] Almost sure asymptotic for Ornstein-Uhlenbeck processes of Poisson potential
    Xing, Fei
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (12) : 2091 - 2102