Asymptotic behavior of maximum likelihood estimators for Ornstein-Uhlenbeck process with large linear drift

被引:0
|
作者
Zhang, Xuekang [1 ,2 ]
机构
[1] Anhui Polytech Univ, Sch Math Phys & Finance, Wuhu 241000, Peoples R China
[2] Anhui Polytech Univ, Key Lab Adv Percept & Intelligent Control High End, Minist Educ, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
Maximum likelihood estimators; Ornstein-Uhlenbeck process; large linear drift; law of iterated logarithm; consistency; asymptotic distributions; SHARP LARGE DEVIATIONS; PARAMETERS;
D O I
10.1142/S0219493723500247
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the asymptotic behavior of maximum likelihood estimators for Ornstein-Uhlenbeck process with large linear drift dX(t) = -1/epsilon (theta X-t - epsilon(1/2) nu)dt + dB(t), 0 <= t <= T, where theta, nu is an element of R, and { B-t }(t >= 0) is a given standard Brownian motion. The law of iterated logarithm, consistency and asymptotic distributions of the estimators are discussed based on the continuous observation {X-t}(t is an element of[0,T]) as epsilon -> 0.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] First passage time density of an Ornstein-Uhlenbeck process with broken drift
    Ankirchner, Stefan
    Blanchet-Scalliet, Christophette
    Dorobantu, Diana
    Gay, Laura
    STOCHASTIC MODELS, 2022, 38 (02) : 308 - 329
  • [32] ON THE DISTRIBUTION OF THE INTEGRATED SQUARE OF THE ORNSTEIN-UHLENBECK PROCESS
    DANKEL, T
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1991, 51 (02) : 568 - 574
  • [33] Asymptotic properties of an estimator of the drift coefficients of multidimensional Ornstein-Uhlenbeck processes that are not necessarily stable
    Basal, Gopal K.
    Lee, Philip
    ELECTRONIC JOURNAL OF STATISTICS, 2008, 2 : 1309 - 1344
  • [34] Properties of the reflected Ornstein-Uhlenbeck process
    Ward, AR
    Glynn, PW
    QUEUEING SYSTEMS, 2003, 44 (02) : 109 - 123
  • [35] LONG TIME BEHAVIOR OF A RUMOR MODEL WITH ORNSTEIN-UHLENBECK PROCESS
    Wang, Xiaohuan
    Wang, Xinyao
    Yang, Wanli
    QUARTERLY OF APPLIED MATHEMATICS, 2024,
  • [36] Least-Squares Estimators of Drift Parameter for Discretely Observed Fractional Ornstein-Uhlenbeck Processes
    Kriz, Pavel
    Szala, Leszek
    MATHEMATICS, 2020, 8 (05)
  • [37] Sharp large deviations for the non-stationary Ornstein-Uhlenbeck process
    Bercu, Bernard
    Coutin, Laure
    Savy, Nicolas
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (10) : 3393 - 3424
  • [38] Using the Ornstein-Uhlenbeck Process for Random Exploration
    Nauta, Johannes
    Khaluf, Yara
    Simoens, Pieter
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON COMPLEXITY, FUTURE INFORMATION SYSTEMS AND RISK (COMPLEXIS), 2019, : 59 - 66
  • [39] Robust parameter estimation for the Ornstein-Uhlenbeck process
    Rieder, Sonja
    STATISTICAL METHODS AND APPLICATIONS, 2012, 21 (04) : 411 - 436
  • [40] The radiation quality factor as an Ornstein-Uhlenbeck process
    Barghouty, A. F.
    RADIATION MEASUREMENTS, 2011, 46 (02) : 224 - 231