Asymptotic behavior of maximum likelihood estimators for Ornstein-Uhlenbeck process with large linear drift
被引:0
|
作者:
Zhang, Xuekang
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Polytech Univ, Sch Math Phys & Finance, Wuhu 241000, Peoples R China
Anhui Polytech Univ, Key Lab Adv Percept & Intelligent Control High End, Minist Educ, Wuhu 241000, Peoples R ChinaAnhui Polytech Univ, Sch Math Phys & Finance, Wuhu 241000, Peoples R China
Zhang, Xuekang
[1
,2
]
机构:
[1] Anhui Polytech Univ, Sch Math Phys & Finance, Wuhu 241000, Peoples R China
[2] Anhui Polytech Univ, Key Lab Adv Percept & Intelligent Control High End, Minist Educ, Wuhu 241000, Peoples R China
Maximum likelihood estimators;
Ornstein-Uhlenbeck process;
large linear drift;
law of iterated logarithm;
consistency;
asymptotic distributions;
SHARP LARGE DEVIATIONS;
PARAMETERS;
D O I:
10.1142/S0219493723500247
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this paper, we study the asymptotic behavior of maximum likelihood estimators for Ornstein-Uhlenbeck process with large linear drift dX(t) = -1/epsilon (theta X-t - epsilon(1/2) nu)dt + dB(t), 0 <= t <= T, where theta, nu is an element of R, and { B-t }(t >= 0) is a given standard Brownian motion. The law of iterated logarithm, consistency and asymptotic distributions of the estimators are discussed based on the continuous observation {X-t}(t is an element of[0,T]) as epsilon -> 0.
机构:
Univ Bordeaux, Inst Math Bordeaux, UMR 5251, Cours Liberat 351, F-33405 Talence, FranceUniv Bordeaux, Inst Math Bordeaux, UMR 5251, Cours Liberat 351, F-33405 Talence, France
Bercu, Bernard
Richou, Adrien
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bordeaux, Inst Math Bordeaux, UMR 5251, Cours Liberat 351, F-33405 Talence, FranceUniv Bordeaux, Inst Math Bordeaux, UMR 5251, Cours Liberat 351, F-33405 Talence, France
机构:
Univ Paris Diderot, LPSM, UMR 8001, Paris, FranceUniv Paris Diderot, LPSM, UMR 8001, Paris, France
Gaiffas, Stephane
Matulewicz, Gustaw
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Ecole Polytech, CMAP, Route Saclay, F-91128 Palaiseau, France
Univ Paris Saclay, CNRS, Route Saclay, F-91128 Palaiseau, FranceUniv Paris Diderot, LPSM, UMR 8001, Paris, France