Hydrogen storage capacity of the niobium atom adsorbed on carbon and boron nitride planar nanoflakes

被引:5
|
作者
Sergio, C. S. [1 ]
de Campos, M. [1 ]
Pansini, F. N. N. [2 ]
机构
[1] Univ Fed Roraima, Dept Fis, BR-69310000 Boa Vista, Roraima, Brazil
[2] Univ Fed Espirito Santo, Dept Fis, BR-29075910 Vitoria, ES, Brazil
关键词
TRANSITION-METAL; DOPED GRAPHENE; BASIS-SETS; ADSORPTION; CLUSTERS; H-2; CA; DEFECTS; SPECTRA; DESIGN;
D O I
10.1016/j.ijhydene.2022.11.158
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present work, we investigate the capacity of the niobium atom adsorbed on the carbon and boron nitride planar flakes to store hydrogen molecules. Specifically, the Nb adsorbed on the circumcoronene (Nb@C), hexagonal boron nitride (Nb@h -BN), and the h -BN with the central ring substituted by carbons (Nb@C6/h -BN). The Nb@C and Nb@C6/ h -BN systems present a hybridization among the carbon and niobium orbitals, which implies higher binding energy between the Nb atom and the corresponding flake, con-trasting with the observed for the Nb@h -BN cluster. All the Nb@flakes possess multi-plicity different from one, reinforcing the importance of considering the various accessible spin-state. Despite the high number of adsorbed hydrogen molecules supported by the Nb@flakes, the stability of the whole system is affected as the number of molecular hydrogen increases. The Nb@C6/h -BN is the system that satisfies the conditions of sta-bility and H2 storage capacity. We highlight that the storage capacity of a given system must be measured considering not only the number of hydrogen molecules supported by the structure but also taking into account how the presence of nH2 affects the stability of the whole material.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:8189 / 8197
页数:9
相关论文
共 50 条
  • [1] Hydrogen Storage in Boron Nitride and Carbon Nanomaterials
    Oku, Takeo
    ENERGIES, 2015, 8 (01): : 319 - 337
  • [2] The effect of boron atom doping on hydrogen storage capacity
    Guo, Chen
    Wang, Chong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 60 : 524 - 530
  • [3] Boron Nitride for Hydrogen Storage
    Lale, Abhijeet
    Bernard, Samuel
    Demirci, Umit B.
    CHEMPLUSCHEM, 2018, 83 (10): : 893 - 903
  • [4] Capacity enhancement of polylithiated functionalized boron nitride nanotubes: an efficient hydrogen storage medium
    Panigrahi, Puspamitra
    Kumar, Ashok
    Bae, Hyeonhu
    Lee, Hoonkyung
    Ahuja, Rajeev
    Hussain, Tanveer
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (27) : 15675 - 15682
  • [5] Maximizing methane and hydrogen delivery capacity by carbon and boron nitride nanoscrolls
    Peng, Xuan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 94 : 497 - 509
  • [6] Carbon doped boron nitride cages as competitive candidates for hydrogen storage materials
    Wu, H. Y.
    Fan, X. F.
    Kuo, Jer-Lai
    Deng, Wei-Qiao
    CHEMICAL COMMUNICATIONS, 2010, 46 (06) : 883 - 885
  • [7] Hydrogen storage in graphitic carbon nitride coordinated with boron clusters: A DFT study
    Villegas, Blanca Alicia Guardado
    Carrillo, Roberto Garcia
    Garcia, Nora Aleyda
    Horley, Paul
    Sanchez, Mario
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2025, 138
  • [8] Hydrogen storage ability of hexagonal boron nitride
    Kovalskii, Andrey M.
    Manakhov, Anton M.
    Afanasev, Pavel A.
    Popov, Zakhar I.
    Matveev, Andrei T.
    Al-Qasim, Abdulaziz S.
    FRONTIERS IN MATERIALS, 2024, 11
  • [9] Transition-metal dispersion on carbon-doped boron nitride nanostructures: Applications for high-capacity hydrogen storage
    Chen, Ming
    Zhao, Yu-Jun
    Liao, Ji-Hai
    Yang, Xiao-Bao
    PHYSICAL REVIEW B, 2012, 86 (04):
  • [10] Deformation behaviors of hydrogen filled boron nitride and boron nitride - carbon nanotubes: Molecular dynamics simulations of proposed materials for hydrogen storage, gas sensing, and radiation shielding
    Dethan, Jacob F. N.
    Ramakrishnan, Narayanan
    Rhamdhani, M. Akbar
    Pownceby, Mark, I
    Swamy, Varghese
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 57 : 746 - 758