Passivation engineering via silica-encapsulated quantum dots for highly sensitive photodetection

被引:16
作者
Chun, Ji Yun [1 ]
Kim, Byung Gi [1 ]
Kim, Jin Young [1 ]
Jang, Woongsik [1 ]
Wang, Dong Hwan [1 ,2 ]
机构
[1] Chung Ang Univ, Sch Integrat Engn, Seoul, South Korea
[2] Chung Ang Univ, Sch Integrat Engn, 84 Heukseok Ro, Seoul 06974, South Korea
基金
新加坡国家研究基金会;
关键词
grain boundary passivation; perovskite quantum dots; photodetectors; photosensitive layers; trap; PEROVSKITE SOLAR-CELLS; LIGHT-EMITTING-DIODES; DEFECT PASSIVATION; EFFICIENT; RECOMBINATION; PERFORMANCE; FABRICATION; MORPHOLOGY; STABILITY; TRANSPORT;
D O I
10.1002/cey2.350
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Organometal halide perovskites are promising semiconducting materials for photodetectors because of their favorable optoelectrical properties. Although nanoscale perovskite materials such as quantum dots (QDs) show novel behavior, they have intrinsic stability issues. In this study, an effectively silane barrier-capped quantum dot (QD@APDEMS) is thinly applied onto a bulk perovskite photosensitive layer for use in photodetectors. QD@APDEMS is synthesized with a silane ligand with hydrophobic CH3-terminal groups, resulting in excellent dispersibility and durability to enable effective coating. The introduction of the QD@APDEMS layer results in the formation of a low-defect perovskite film with enlarged grains. This is attributed to the grain boundary interconnection effect via interaction between the functional groups of QD@APDEMS and uncoordinated Pb2+ in grain boundaries. By passivating the grain boundaries, where various trap sites are distributed, hole charge-carrier injection and shunt leakage can be suppressed. Also, from the energy point of view, the deep highest occupied molecular orbital (HOMO) level of QD@APDEMS can work as a hole charge injection barrier. Improved charge dynamics (generation, transfer, and recombination properties) and reduced trap density of QD@APDEMS are demonstrated. When this perovskite film is used in a photodetector, the device performance (especially the detectivity) stands out among existing perovskites evaluated for energy sensing device applications.
引用
收藏
页数:14
相关论文
共 92 条
[1]   Highly efficient self-powered perovskite photodiode with an electron-blocking hole-transport NiOx layer [J].
Afzal, Amir Muhammad ;
Bae, In-Gon ;
Aggarwal, Yushika ;
Park, Jaewoo ;
Jeong, Hye-Ryeon ;
Ha Choi, Eun ;
Park, Byoungchoo .
SCIENTIFIC REPORTS, 2021, 11 (01)
[2]   On the Efficiency of Charge Transfer State Splitting in Polymer: Fullerene Solar Cells [J].
Albrecht, Steve ;
Vandewal, Koen ;
Tumbleston, John R. ;
Fischer, Florian S. U. ;
Douglas, Jessica D. ;
Frechet, Jean M. J. ;
Ludwigs, Sabine ;
Ade, Harald ;
Salleo, Alberto ;
Neher, Dieter .
ADVANCED MATERIALS, 2014, 26 (16) :2533-2539
[3]   Evidence for reduced charge recombination in carbon nanotube/perovskite-based active layers [J].
Bag, Monojit ;
Renna, Lawrence A. ;
Jeong, Seung Pyo ;
Han, Xu ;
Cutting, Christie L. ;
Maroudas, Dimitrios ;
Venkataraman, D. .
CHEMICAL PHYSICS LETTERS, 2016, 662 :35-41
[4]   Low-temperature processing of optimally polymer-wrapped α-CsPbI3 for self-powered flexible photo-detector application [J].
Bansode, Umesh ;
Rahman, Atikur ;
Ogale, Satishchandra .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (23) :6986-6996
[5]   High Performance and Stable All-Inorganic Metal Halide Perovskite-Based Photodetectors for Optical Communication Applications [J].
Bao, Chunxiong ;
Yang, Jie ;
Bai, Sai ;
Xu, Weidong ;
Yan, Zhibo ;
Xu, Qingyu ;
Liu, Junming ;
Zhang, Wenjing ;
Gao, Feng .
ADVANCED MATERIALS, 2018, 30 (38)
[6]   Polycrystalline CdTe thin films for photovoltaic applications [J].
Bosio, Alessio ;
Romeo, Nicola ;
Mazzamuto, Samantha ;
Canevari, Vittorio .
PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION OF MATERIALS, 2006, 52 (04) :247-279
[7]   Nonfullerene-Based Organic Photodetectors for Ultrahigh Sensitivity Visible Light Detection [J].
Bristow, Helen ;
Jacoutot, Polina ;
Scaccabarozzi, Alberto D. ;
Babics, Maxime ;
Moser, Maximilian ;
Wadsworth, Andrew ;
Anthopoulos, Thomas D. ;
Bakulin, Artem ;
McCulloch, Iain ;
Gasparini, Nicola .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (43) :48836-48844
[8]   Competitive Nucleation Mechanism for CsPbBr3 Perovskite Nanoplatelet Growth [J].
Burlakov, Victor M. ;
Hassan, Yasser ;
Danaie, Mohsen ;
Snaith, Henry J. ;
Goriely, Alain .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (16) :6535-6543
[9]   p-Type CuI Islands on TiO2 Electron Transport Layer for a Highly Efficient Planar-Perovskite Solar Cell with Negligible Hysteresis [J].
Byranvand, Mahdi Malekshahi ;
Kim, Taewan ;
Song, Seulki ;
Kang, Gyeongho ;
Ryu, Seung Un ;
Park, Taiho .
ADVANCED ENERGY MATERIALS, 2018, 8 (05)
[10]   Identifying the Molecular Structures of Intermediates for Optimizing the Fabrication of High-Quality Perovskite Films [J].
Cao, Jing ;
Jing, Xiaojing ;
Yan, Juanzhu ;
Hu, Chengyi ;
Chen, Ruihao ;
Yin, Jun ;
Li, Jing ;
Zheng, Nanfeng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (31) :9919-9926