Prioritizing candidate peptides for cancer vaccines through predicting peptide presentation by HLA-I proteins

被引:3
作者
Zhou, Laura Y. [1 ]
Zou, Fei [1 ]
Sun, Wei [1 ,2 ,3 ]
机构
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27515 USA
[2] Fred Hutchinson Canc Ctr, Publ Hlth Sci Div, Biostat Program, Seattle, WA 98109 USA
[3] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
关键词
cancer vaccine; melanoma; mixture model; neoantigens; neural network; peptide-HLA association; ALIGNMENT; DECONVOLUTION;
D O I
10.1111/biom.13717
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cancer (treatment) vaccines that are made of neoantigens, or peptides unique to tumor cells due to somatic mutations, have emerged as a promising method to reinvigorate the immune response against cancer. A key step to prioritizing neoantigens for cancer vaccines is computationally predicting which neoantigens are presented on the cell surface by a human leukocyte antigen (HLA). We propose to address this challenge by training a neural network using mass spectrometry (MS) data composed of peptides presented by at least one of several HLAs of a subject. We embed the neural network within a mixture model and train the neural network by maximizing the likelihood of the mixture model. After evaluating our method using data sets where the peptide presentation status was known, we applied it to analyze somatic mutations of 60 melanoma patients and identified a group of neoantigens more immunogenic in tumor cells than in normal cells. Moreover, neoantigen burden estimated by our method was significantly associated with a measurement of the immune system activity, suggesting these neoantigens could induce an immune response.
引用
收藏
页码:2664 / 2676
页数:13
相关论文
共 43 条
  • [1] MHC-II neoantigens shape tumour immunity and response to immunotherapy
    Alspach, Elise
    Lussier, Danielle M.
    Miceli, Alexander P.
    Kizhvatov, Ilya
    DuPage, Michel
    Luoma, Adrienne M.
    Meng, Wei
    Lichti, Cheryl F.
    Esaulova, Ekaterina
    Vomund, Anthony N.
    Runci, Daniele
    Ward, Jeffrey P.
    Gubin, Matthew M.
    Medrano, Ruan F. V.
    Arthur, Cora D.
    White, J. Michael
    Sheehan, Kathleen C. F.
    Chen, Alex
    Wucherpfennig, Kai W.
    Jacks, Tyler
    Unanue, Emil R.
    Artyomov, Maxim N.
    Schreiber, Robert D.
    [J]. NATURE, 2019, 574 (7780) : 696 - +
  • [2] NNAlign_MA; MHC Peptidome Deconvolution for Accurate MHC Binding Motif Characterization and Improved T-cell Epitope Predictions
    Alvarez, Bruno
    Reynisson, Birkir
    Barra, Carolina
    Buus, Soren
    Ternette, Nicola
    Connelley, Tim
    Andreatta, Massimo
    Nielsen, Morten
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (12) : 2459 - 2477
  • [3] Gapped sequence alignment using artificial neural networks: application to the MHC class I system
    Andreatta, Massimo
    Nielsen, Morten
    [J]. BIOINFORMATICS, 2016, 32 (04) : 511 - 517
  • [4] Simultaneous alignment and clustering of peptide data using a Gibbs sampling approach
    Andreatta, Massimo
    Lund, Ole
    Nielsen, Morten
    [J]. BIOINFORMATICS, 2013, 29 (01) : 8 - 14
  • [5] Unsupervised HLA Peptidome Deconvolution Improves Ligand Prediction Accuracy and Predicts Cooperative Effects in Peptide-HLA Interactions
    Bassani-Sternberet, Michal
    Gfellert, David
    [J]. JOURNAL OF IMMUNOLOGY, 2016, 197 (06) : 2492 - 2499
  • [6] Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity
    Bassani-Sternberg, Michal
    Chong, Chloe
    Guillaume, Philippe
    Solleder, Marthe
    Pak, HuiSong
    Gannon, Philippe O.
    Kandalaft, Lana E.
    Coukos, George
    Gfeller, David
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (08) : e1005725
  • [7] Bhattacharya R., 2017, bioRxiv
  • [8] Advances in the development of personalized neoantigen-based therapeutic cancer vaccines
    Blass, Eryn
    Ott, Patrick A.
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2021, 18 (04) : 215 - 229
  • [9] CD4+ T cell help in cancer immunology and immunotherapy
    Borst, Jannie
    Ahrends, Tomasz
    Babala, Nikolina
    Melief, Cornelis J. M.
    Kastenmueller, Wolfgang
    [J]. NATURE REVIEWS IMMUNOLOGY, 2018, 18 (10) : 635 - 647
  • [10] Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification
    Bulik-Sullivan, Brendan
    Busby, Jennifer
    Palmer, Christine D.
    Davis, Matthew J.
    Murphy, Tyler
    Clark, Andrew
    Busby, Michele
    Duke, Fujiko
    Yang, Aaron
    Young, Lauren
    Ojo, Noelle C.
    Caldwell, Kamilah
    Abhyankar, Jesse
    Boucher, Thomas
    Hart, Meghan G.
    Makarov, Vladimir
    De Montpreville, Vincent Thomas
    Mercier, Olaf
    Chan, Timothy A.
    Scagliotti, Giorgio
    Bironzo, Paolo
    Novello, Silvia
    Karachaliou, Niki
    Rosell, Rafael
    Anderson, Ian
    Gabrail, Nashat
    Hrom, John
    Limvarapuss, Chainarong
    Choquette, Karin
    Spira, Alexander
    Rousseau, Raphael
    Voong, Cynthia
    Rizvi, Naiyer A.
    Fadel, Elie
    Frattini, Mark
    Jooss, Karin
    Skoberne, Mojca
    Francis, Joshua
    Yelensky, Roman
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (01) : 55 - +