Boundary regularity of mixed local-nonlocal operators and its application

被引:11
作者
Biswas, Anup [1 ]
Modasiya, Mitesh [1 ]
Sen, Abhrojyoti [1 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Math, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India
关键词
Operators of mixed order; Semilinear equation; Overdetermined problems; Gradient estimate; OVERDETERMINED PROBLEMS; FRACTIONAL LAPLACIAN; VISCOSITY SOLUTIONS; DIRICHLET PROBLEM; EQUATIONS;
D O I
10.1007/s10231-022-01256-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a bounded C-2 domain in R-n and u is an element of C(R-n) solves Delta u + aIu + C-0 vertical bar Du vertical bar >= -K in Omega, Delta u + aIu - C-0 vertical bar Du vertical bar <= K in Omega, u = 0 in Omega(c), in the viscosity sense, where 0 <= a < A(0), C-0 , K >= 0, and I is a suitable nonlocal operator. We show that u/delta is in C-kappa((Omega) over bar) for some kappa is an element of (0, 1), where delta(x) = dist(x, Omega(c)). Using this result, we also establish that u is an element of C-1,C-gamma ((Omega) over bar). Finally, we apply these results to study an overdetermined problem for mixed local-nonlocal operators.
引用
收藏
页码:679 / 710
页数:32
相关论文
共 39 条
[1]  
Arora R., 2022, PREPRINT
[2]   Second-order elliptic integro-differential equations: viscosity solutions' theory revisited [J].
Barles, B. ;
Imbert, Cyril .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03) :567-585
[3]   On the Dirichlet problem for second-order elliptic integro-differential equations [J].
Barles, G. ;
Chasseigne, E. ;
Imbert, C. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (01) :213-246
[4]  
Biagi S., 2021, PREPRINT
[5]   Mixed local and nonlocal elliptic operators: regularity and maximum principles [J].
Biagi, Stefano ;
Dipierro, Serena ;
Valdinoci, Enrico ;
Vecchi, Eugenio .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (03) :585-629
[6]   Semilinear elliptic equations involving mixed local and nonlocal operators [J].
Biagi, Stefano ;
Vecchi, Eugenio ;
Dipierro, Serena ;
Valdinoci, Enrico .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (05) :1611-1641
[7]  
Biswas A., PREPRINT
[8]   Hopf's lemma for viscosity solutions to a class of non-local equations with applications [J].
Biswas, Anup ;
Lorinczi, Jozsef .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 204
[10]   On overdetermined problems for a general class of nonlocal operators [J].
Biswas, Anup ;
Jarohs, Sven .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (05) :2368-2393