Characteristics of the atmospheric boundary layer height: A perspective on turbulent motion

被引:0
|
作者
Xian, Jinhong [1 ,2 ]
Luo, Hongyan [1 ]
Lu, Chao [1 ]
Lin, Xiaoling [1 ]
Yang, Honglong [1 ]
Zhang, Ning [2 ,3 ]
机构
[1] Meteorol Bur Shenzhen Municipal, Shenzhen Natl Climate Observ, Shenzhen 518040, Peoples R China
[2] Nanjing Univ, Sch Atmospher Sci, Nanjing 210023, Peoples R China
[3] China Meteorol Adm, Key Lab Urban Meteorol, Beijing 100089, Peoples R China
基金
中国国家自然科学基金;
关键词
Boundary layer height; Wind lidar; Turbulent motion; Characteristics; Power -law exponent; DOPPLER LIDAR; CEILOMETER; AEROSOL; DISSIPATION; STATISTICS; RETRIEVAL; VELOCITY; ENERGY; WRF;
D O I
10.1016/j.scitotenv.2024.170895
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Turbulent motion is the essential difference between the atmospheric boundary layer and the free atmosphere. Due to the lack of detection methods for vertical turbulent structures, commonly used methods usually focus on material distribution, thermal effects, or dynamic effects, and they fail to reflect the boundary layer objectively in terms of turbulence. Therefore, to date, the acquisition and characteristic analysis of the atmospheric boundary layer height under turbulent angles have not been achieved. This study proposes a method for obtaining the height of the boundary layer based on the power-law exponent of atmospheric turbulence. The proposed method is validated and analyzed with data from radiosondes obtained under sunny, cloudy, and light rain weather conditions, demonstrating its advantages. With the proposed method, the first published acquisition of boundary layer height characteristics based on turbulent motion is achieved, including a statistical analysis of the daily and monthly variation characteristics of the boundary layer height over the Shenzhen area in China. Moreover, different oscillation frequencies of the boundary layer height under different wind directions are revealed. The results of this study break the traditional bottleneck of not being able to obtain the height of the boundary layer based on turbulence, and provide a new perspective for the acquisition and research of the boundary layer height.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Numerical simulation of turbulent atmospheric boundary layer flows
    Benes, L
    Bodnár, T
    Fraunie, P
    Kozel, K
    Sládek, I
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S905 - S906
  • [32] SOFT TURBULENT STATE OF THE ATMOSPHERIC BOUNDARY-LAYER
    JANOSI, IM
    VATTAY, G
    PHYSICAL REVIEW A, 1992, 46 (10): : 6386 - 6389
  • [33] Specifics of Sounding the Atmospheric Boundary Layer with a Turbulent Lidar
    Razenkov, I. A.
    ATMOSPHERIC AND OCEANIC OPTICS, 2020, 33 (06) : 610 - 615
  • [34] THE LUMP STRUCTURE OF TURBULENT FIELD IN ATMOSPHERIC BOUNDARY LAYER
    周明煜
    吕乃平
    陈炎涓
    李诗明
    Science China Mathematics, 1981, (12) : 1705 - 1716
  • [35] Simulation of atmospheric turbulent boundary layer in a wind tunnel
    Sekishita, Nobumasa
    Makita, Hideharu
    Ichigo, Masayuki
    Fujita, Tadasuke
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2002, 68 (665): : 55 - 62
  • [36] Specifics of Sounding the Atmospheric Boundary Layer with a Turbulent Lidar
    I. A. Razenkov
    Atmospheric and Oceanic Optics, 2020, 33 : 610 - 615
  • [37] On parametrization of vertical turbulent exchange in atmospheric boundary layer
    Voloshchuk, V.M.
    Kupriyanchuk, A.I.
    Lev, T.D.
    Meteorologiya i Gidrologiya, 1992, (03): : 5 - 15
  • [38] On the turbulent Prandtl number in the stable atmospheric boundary layer
    Andrey A. Grachev
    Edgar L Andreas
    Christopher W. Fairall
    Peter S. Guest
    P. Ola G. Persson
    Boundary-Layer Meteorology, 2007, 125 : 329 - 341
  • [39] THE LUMP STRUCTURE OF TURBULENT FIELD IN ATMOSPHERIC BOUNDARY LAYER
    周明煜
    吕乃平
    陈炎涓
    李诗明
    ScienceinChina,SerA., 1981, Ser.A.1981 (12) : 1705 - 1716
  • [40] The height dependence of the turbulent Schmidt number within the boundary layer
    Koeltzsch, K
    ATMOSPHERIC ENVIRONMENT, 2000, 34 (07) : 1147 - 1151