Variable repetition rate pulse power supply based on magnetic pulse compression for copper vapor lasers

被引:0
|
作者
Singh, Dheeraj K. [1 ,2 ]
Gupta, A. [2 ]
Vijayan, R. [2 ]
Nayak, A. [2 ]
Rawat, V. S. [1 ,2 ]
Kundu, S. [2 ]
Sharma, Archana [1 ,2 ]
机构
[1] Homi Bhabha Natl Inst, Mumbai, India
[2] Bhabha Atom Res Ctr, Beam Technol Dev Grp, Mumbai, India
关键词
Magnetic pulse compression; Pulse power supply; Copper vapor laser; Variable pulse repetition rate; Pulse transformer; Resonant charging; Impedance matching; ELECTRON-DENSITY;
D O I
10.1007/s11082-024-06380-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Magnetic Pulse Compression (MPC) system is a well-established method for generating high-peak-power, short-duration voltage pulses, commonly used in pulse power supplies (PPS). Traditionally designed for a fixed high repetition rate, this paper explores the techniques and outcomes of variable repetition rate operation in an MPC-based PPS used to excite a copper vapor laser (CVL). Specifically, the PPS, initially designed for 9 kHz operation, is tested at three different rates: 8 kHz, 9 kHz, and 10 kHz. A mathematical model is developed, and experimental modifications are presented in this paper. The study investigates the impact of repetition rate variations on CVL parameters, particularly phantom current (Phantom current: 47% at 8 kHz, 54% at 9 kHz, and 51% at 10 kHz). Phantom current reduces at 10 kHz due to improved impedance matching. At 8 kHz, the laser output is 24W, increases to 30W at 9 kHz and 43W at 10 kHz with a plane-plane resonator configuration. This trend extends to the master oscillator power amplifier (MOPA) at 10 kHz, resulting in a 50% increase in optical power output compared to 9 kHz. This improvement at 10 kHz applies to various parameters, including optical pulse characteristics, average power, electro-optic efficiency, energy per pulse, reduced jitter, and impedance matching.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] LIMITATION OF PULSE REPETITION RATE IN PERIODIC CO2-LASERS
    BARANOV, VY
    BREEV, VV
    MALYUTA, DD
    NIZIEV, VG
    KVANTOVAYA ELEKTRONIKA, 1977, 4 (09): : 1861 - 1866
  • [32] HIGH-PULSE-REPETITION-FREQUENCY COPPER-VAPOR LASER
    SBOTINOV, NV
    KALCHEV, SD
    TELBIZOV, PK
    KVANTOVAYA ELEKTRONIKA, 1975, 2 (08): : 1833 - 1834
  • [33] Mechanisms of additive hydrogen for high repetition rate copper vapor lasers
    Cheng, Cheng
    Sun, Wei
    Wuli Xuebao/Acta Physica Sinica, 1997, 46 (05): : 897 - 907
  • [34] Burst Mode Operation of a High Peak Power High Pulse Repetition Rate Capacitor Charging Power Supply
    Holt, S. L.
    Lynn, C. F.
    Parson, J. M.
    Dickens, J. C.
    Neuber, A. A.
    Mankowski, J. J.
    2015 IEEE PULSED POWER CONFERENCE (PPC), 2015,
  • [35] Nanosecond pulse generators based on magnetic pulse compression system
    Zhang, Dongdong
    Zhou, Yuan
    Wang, Jue
    Shao, Tao
    Yan, Ping
    Gaodianya Jishu/High Voltage Engineering, 2013, 39 (09): : 2216 - 2221
  • [36] Exploration of Jitter in Solid-State Switch-Based Pulse Power Supply of Copper Vapor Laser
    Dheeraj K. Singh
    B. Dikshit
    N. O. Kawade
    Jaya Mukherjee
    V. S. Rawat
    Journal of Russian Laser Research, 2020, 41 : 628 - 637
  • [37] EXPLORATION OF JITTER IN SOLID-STATE SWITCH-BASED PULSE POWER SUPPLY OF COPPER VAPOR LASER
    Singh, Dheeraj K.
    Dikshit, B.
    Kawade, N. O.
    Mukherjee, Jaya
    Rawat, V. S.
    JOURNAL OF RUSSIAN LASER RESEARCH, 2020, 41 (06) : 628 - 637
  • [38] Modelocked semiconductor laser system with pulse picking for variable repetition rate
    Balzer, J. C.
    Schlauch, T.
    Hoffmann, Th.
    Klehr, A.
    Erbert, G.
    Hofmann, M. R.
    ELECTRONICS LETTERS, 2011, 47 (25) : 1387 - U111
  • [39] Flexible Nyquist Pulse Sequence Generation With Variable Bandwidth and Repetition Rate
    Preussler, Stefan
    Wenzel, Norman
    Schneider, Thomas
    IEEE PHOTONICS JOURNAL, 2014, 6 (04):
  • [40] A Pulsed Power Supply Based on a Series Pulsed Power Compensator for Low Pulse Repetition Frequency Applications
    Xu, Ye
    Ruan, Xinbo
    Meng, Yuan
    Xiao, Lingxuan
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2025, 40 (04) : 5505 - 5517