Variable repetition rate pulse power supply based on magnetic pulse compression for copper vapor lasers

被引:0
|
作者
Singh, Dheeraj K. [1 ,2 ]
Gupta, A. [2 ]
Vijayan, R. [2 ]
Nayak, A. [2 ]
Rawat, V. S. [1 ,2 ]
Kundu, S. [2 ]
Sharma, Archana [1 ,2 ]
机构
[1] Homi Bhabha Natl Inst, Mumbai, India
[2] Bhabha Atom Res Ctr, Beam Technol Dev Grp, Mumbai, India
关键词
Magnetic pulse compression; Pulse power supply; Copper vapor laser; Variable pulse repetition rate; Pulse transformer; Resonant charging; Impedance matching; ELECTRON-DENSITY;
D O I
10.1007/s11082-024-06380-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Magnetic Pulse Compression (MPC) system is a well-established method for generating high-peak-power, short-duration voltage pulses, commonly used in pulse power supplies (PPS). Traditionally designed for a fixed high repetition rate, this paper explores the techniques and outcomes of variable repetition rate operation in an MPC-based PPS used to excite a copper vapor laser (CVL). Specifically, the PPS, initially designed for 9 kHz operation, is tested at three different rates: 8 kHz, 9 kHz, and 10 kHz. A mathematical model is developed, and experimental modifications are presented in this paper. The study investigates the impact of repetition rate variations on CVL parameters, particularly phantom current (Phantom current: 47% at 8 kHz, 54% at 9 kHz, and 51% at 10 kHz). Phantom current reduces at 10 kHz due to improved impedance matching. At 8 kHz, the laser output is 24W, increases to 30W at 9 kHz and 43W at 10 kHz with a plane-plane resonator configuration. This trend extends to the master oscillator power amplifier (MOPA) at 10 kHz, resulting in a 50% increase in optical power output compared to 9 kHz. This improvement at 10 kHz applies to various parameters, including optical pulse characteristics, average power, electro-optic efficiency, energy per pulse, reduced jitter, and impedance matching.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] DEVELOPMENT OF A 10-KW SOLID-STATE PULSE POWER-SUPPLY FOR COPPER VAPOR LASERS
    FUJII, T
    NEMOTO, K
    ISHIKAWA, R
    HAYASHI, K
    NODA, E
    OPTICAL ENGINEERING, 1992, 31 (11) : 2481 - 2487
  • [22] HIGH-POWER NANOSECOND PULSE-GENERATOR FOR COPPER VAPOR LASERS
    MUCHNIK, ML
    PARSHIN, GD
    CHERNYAK, EY
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1983, 26 (03) : 592 - 593
  • [23] Evaluation of magnetic materials and insulation systems for repetition-rate pulse compression applications
    McDonald, K
    Curry, R
    O'Connell, R
    Melcher, P
    Ness, R
    Huang, CF
    PPC-2003: 14TH IEEE INTERNATIONAL PULSED POWER CONFERENCE, VOLS 1 AND 2, DIGEST OF TECHNICAL PAPERS, 2003, : 603 - 606
  • [24] CONSTANT PULSE ENERGY POWER-SUPPLY FOR A HIGH REPETITION RATE LASER SYSTEM
    LO, CC
    FAN, B
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1976, 47 (01): : 63 - 65
  • [25] Pulse-to-pulse polarization-switching method for high-repetition-rate lasers
    Hahne, Steffen
    Johnston, Benjamin F.
    Withford, Michael J.
    APPLIED OPTICS, 2007, 46 (06) : 954 - 958
  • [26] Influence of the voltage pulse front shortening on the pulse repetition rate in a copper vapour laser
    Bokhan, P. A.
    Gugin, P. P.
    Zakrevskii, D. E.
    Lavrukhin, M. A.
    Kazaryan, M. A.
    Lyabin, N. A.
    QUANTUM ELECTRONICS, 2013, 43 (08) : 715 - 719
  • [27] Development of high-power KrF lasers with a pulse repetition rate up to 5 kHz
    Borisov, VM
    Vinokhodov, AY
    Vodchits, VA
    El'tsov, AV
    Ivanov, AS
    QUANTUM ELECTRONICS, 2000, 30 (09) : 783 - 786
  • [28] Copper vapor laser pumping system with compression of a excitation pulse and breakaway of the power contribution
    Zhdaniev, O
    MODERN TECHNIQUES AND TECHNOLOGY: MTT' 2000, 2000, : 118 - 119
  • [29] A copper bromide vapour laser with a high pulse repetition rate
    Shiyanov, DV
    Evtushenko, GS
    Sukhanov, VB
    Fedorov, VF
    QUANTUM ELECTRONICS, 2002, 32 (08) : 680 - 682
  • [30] High energy high repetition rate ultrashort pulse riber lasers
    Limpert, J.
    Röser, F.
    Schreiber, T.
    Ortac, B.
    Rademaker, K.
    2006 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2006, : 466 - +