Variable repetition rate pulse power supply based on magnetic pulse compression for copper vapor lasers

被引:0
|
作者
Singh, Dheeraj K. [1 ,2 ]
Gupta, A. [2 ]
Vijayan, R. [2 ]
Nayak, A. [2 ]
Rawat, V. S. [1 ,2 ]
Kundu, S. [2 ]
Sharma, Archana [1 ,2 ]
机构
[1] Homi Bhabha Natl Inst, Mumbai, India
[2] Bhabha Atom Res Ctr, Beam Technol Dev Grp, Mumbai, India
关键词
Magnetic pulse compression; Pulse power supply; Copper vapor laser; Variable pulse repetition rate; Pulse transformer; Resonant charging; Impedance matching; ELECTRON-DENSITY;
D O I
10.1007/s11082-024-06380-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Magnetic Pulse Compression (MPC) system is a well-established method for generating high-peak-power, short-duration voltage pulses, commonly used in pulse power supplies (PPS). Traditionally designed for a fixed high repetition rate, this paper explores the techniques and outcomes of variable repetition rate operation in an MPC-based PPS used to excite a copper vapor laser (CVL). Specifically, the PPS, initially designed for 9 kHz operation, is tested at three different rates: 8 kHz, 9 kHz, and 10 kHz. A mathematical model is developed, and experimental modifications are presented in this paper. The study investigates the impact of repetition rate variations on CVL parameters, particularly phantom current (Phantom current: 47% at 8 kHz, 54% at 9 kHz, and 51% at 10 kHz). Phantom current reduces at 10 kHz due to improved impedance matching. At 8 kHz, the laser output is 24W, increases to 30W at 9 kHz and 43W at 10 kHz with a plane-plane resonator configuration. This trend extends to the master oscillator power amplifier (MOPA) at 10 kHz, resulting in a 50% increase in optical power output compared to 9 kHz. This improvement at 10 kHz applies to various parameters, including optical pulse characteristics, average power, electro-optic efficiency, energy per pulse, reduced jitter, and impedance matching.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] A Compact, High Repetition-rate, Nanosecond Pulse Generator Based on Magnetic Pulse Compression System
    Zhang, Dongdong
    Zhou, Yuan
    Wang, Jue
    Yan, Ping
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2011, 18 (04) : 1151 - 1157
  • [12] A High Repetition-Rate Bipolar Submicrosecond Pulse Generator Based on Magnetic Pulse Compression System
    Mi, Yan
    Wan, Jialun
    Bian, Changhao
    Peng, Wencheng
    Yao, Chenguo
    Li, Chengxiang
    2016 IEEE INTERNATIONAL POWER MODULATOR AND HIGH VOLTAGE CONFERENCE (IPMHVC), 2016, : 240 - 245
  • [13] MAGNETIC PULSE-COMPRESSION FOR A COPPER VAPOR LASER
    NEHMADI, M
    KRAMER, Z
    IFRAH, Y
    MIRON, E
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1989, 22 (01) : 29 - 34
  • [14] INFLUENCE OF THE PUMP PULSE REPETITION RATE ON THE POWER APPLIED TO THE DISCHARGE IN A COPPER-VAPOR LASER
    SVIRIDOV, AV
    SOKOLOV, AV
    KVANTOVAYA ELEKTRONIKA, 1979, 6 (11): : 2333 - 2338
  • [15] COPPER VAPOR LASER WITH RADIATION PULSE REPETITION RATE OF 100 KHZ
    ALAEV, MA
    BARANOV, AI
    VERESHCHAGIN, NM
    GNEDIN, IN
    ZHEREBTSOV, YP
    MOSKALENKO, VF
    TSUKANOV, YM
    KVANTOVAYA ELEKTRONIKA, 1976, 3 (05): : 1134 - 1136
  • [16] HIGH REPETITION RATE PULSED POWER GENERATOR USING IGBTs AND MAGNETIC PULSE COMPRESSION CIRCUIT
    Sakugawa, T.
    Kouno, K.
    Kawamoto, K.
    Akiyama, H.
    Suematsu, K.
    Kouda, A.
    Watanabe, M.
    2009 IEEE PULSED POWER CONFERENCE, VOLS 1 AND 2, 2009, : 394 - +
  • [17] ON A MECHANISM OF LIMITATION OF THE LASING PULSE REPETITION RATE IN A COPPER-VAPOR LASER
    BOKHAN, PA
    SILANTEV, VI
    SOLOMONOV, VI
    KVANTOVAYA ELEKTRONIKA, 1980, 7 (06): : 1264 - 1269
  • [18] Kinetic processes determining attainable pulse repetition rate in pulsed metal vapor lasers
    Petrash, GG
    ATOMIC AND MOLECULAR PULSED LASERS II, 1998, 3403 : 110 - 119
  • [19] The processes limiting the pulse repetition rate in pulsed metal and metal compound vapor lasers
    Petrash, GG
    LASER PHYSICS, 2000, 10 (05) : 994 - 1008
  • [20] A High-Repetition-Rate Bipolar Nanosecond Pulse Generator for Dielectric Barrier Discharge Based on a Magnetic Pulse Compression System
    Mi, Yan
    Wan, Jialun
    Bian, Changhao
    Zhang, Yanyuan
    Yao, Chenguo
    Li, Chengxiang
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2018, 46 (07) : 2582 - 2590