Variable repetition rate pulse power supply based on magnetic pulse compression for copper vapor lasers

被引:0
|
作者
Singh, Dheeraj K. [1 ,2 ]
Gupta, A. [2 ]
Vijayan, R. [2 ]
Nayak, A. [2 ]
Rawat, V. S. [1 ,2 ]
Kundu, S. [2 ]
Sharma, Archana [1 ,2 ]
机构
[1] Homi Bhabha Natl Inst, Mumbai, India
[2] Bhabha Atom Res Ctr, Beam Technol Dev Grp, Mumbai, India
关键词
Magnetic pulse compression; Pulse power supply; Copper vapor laser; Variable pulse repetition rate; Pulse transformer; Resonant charging; Impedance matching; ELECTRON-DENSITY;
D O I
10.1007/s11082-024-06380-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Magnetic Pulse Compression (MPC) system is a well-established method for generating high-peak-power, short-duration voltage pulses, commonly used in pulse power supplies (PPS). Traditionally designed for a fixed high repetition rate, this paper explores the techniques and outcomes of variable repetition rate operation in an MPC-based PPS used to excite a copper vapor laser (CVL). Specifically, the PPS, initially designed for 9 kHz operation, is tested at three different rates: 8 kHz, 9 kHz, and 10 kHz. A mathematical model is developed, and experimental modifications are presented in this paper. The study investigates the impact of repetition rate variations on CVL parameters, particularly phantom current (Phantom current: 47% at 8 kHz, 54% at 9 kHz, and 51% at 10 kHz). Phantom current reduces at 10 kHz due to improved impedance matching. At 8 kHz, the laser output is 24W, increases to 30W at 9 kHz and 43W at 10 kHz with a plane-plane resonator configuration. This trend extends to the master oscillator power amplifier (MOPA) at 10 kHz, resulting in a 50% increase in optical power output compared to 9 kHz. This improvement at 10 kHz applies to various parameters, including optical pulse characteristics, average power, electro-optic efficiency, energy per pulse, reduced jitter, and impedance matching.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Variable repetition rate pulse power supply based on magnetic pulse compression for copper vapor lasers
    Dheeraj K. Singh
    A. Gupta
    R. Vijayan
    A. Nayak
    V. S. Rawat
    S. Kundu
    Archana Sharma
    Optical and Quantum Electronics, 56
  • [2] Variable Repetition Rate Simulation of Magnetic Pulse Compression-Based Pulse Power Supply
    Singh, Dheeraj K.
    Vijayan, R.
    Nayak, A.
    Rawat, Vinod S.
    HIGH VOLTAGE-ENERGY STORAGE CAPACITORS AND THEIR APPLICATIONS, HV-ESCA 2023, 2024, 1143 : 415 - 420
  • [3] Limiting pulse repetition rate in copper vapor lasers
    Bokhan, PA
    Zakrevskii, DE
    TECHNICAL PHYSICS, 1997, 42 (05) : 504 - 510
  • [4] Limiting pulse repetition rate in copper vapor lasers
    P. A. Bokhan
    D. É. Zakrevskii
    Technical Physics, 1997, 42 : 504 - 510
  • [5] Limiting pulse repetition rate in copper vapor lasers
    Bokhan, P. A.
    Zakrevskii, D. E.
    Zhurnal Tekhnicheskoi Fiziki, 42 (05):
  • [6] Advances in magnetic pulse compression for copper vapor lasers
    Smilanski, I.
    IEEE Conference Record of Power Modulator Symposium, 1988, : 84 - 85
  • [7] ROLE OF THE PULSE REPETITION FREQUENCY IN COPPER VAPOR LASERS.
    Isaev, A.A.
    Kneipp, H.
    Rentsch, M.
    Soviet journal of quantum electronics, 1983, 13 (06): : 758 - 762
  • [8] THE ROLE OF THE PULSE REPETITION RATE IN A COPPER-VAPOR LASER
    ISAEV, AA
    KNAIPP, K
    RENTSCH, M
    KVANTOVAYA ELEKTRONIKA, 1983, 10 (06): : 1183 - 1190
  • [9] On the mechanism limiting the pulse repetition rate in a copper vapor laser
    Yakovlenko, SI
    LASER PHYSICS, 2000, 10 (05) : 1009 - 1016
  • [10] High pulse repetition rate metal & metal halide vapor lasers
    Evtushenko, GS
    Shiyanov, DV
    Shestakov, DY
    Sukhanov, VB
    Fedorov, VF
    Zhdaniev, OV
    XIV INTERNATIONAL SYMPOSIUM ON GAS FLOW, CHEMICAL LASERS, AND HIGH-POWER LASERS, 2003, 5120 : 60 - 65