Computation offloading techniques in edge computing: A systematic review based on energy, QoS and authentication

被引:3
|
作者
Kanupriya [1 ]
Chana, Inderveer [1 ]
Goyal, Raman Kumar [1 ]
机构
[1] Thapar Inst Engn & Technol, Comp Sci & Engn Dept, Patiala, Punjab, India
关键词
authentication; computation offloading; edge computing; energy consumption; provenance; QoS; RESOURCE-ALLOCATION; DELAY-AWARE; OPTIMIZATION; MINIMIZATION; INTERNET; LATENCY; DESIGN;
D O I
10.1002/cpe.8050
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In today's era, Internet of Things (IoT) devices generate a vast amount of data, which is typically stored in the cloud environment and can be accessed by edge and IoT devices. The data generated by these devices are offloaded through computation offloading (CO) techniques in an edge/cloud computing environment. This paper conducts a systematic literature review (SLR) to review the state-of-the-art CO techniques in edge computing (EC) in the context of energy, Quality of Service (QoS), authentication and traceability. In this SLR, the evolution of offloading techniques is analyzed in detail. A total of 138 articles, spanning from 2016 to 2023 (till date), have been classified into QoS, energy, and authentication and traceability-based CO techniques. The optimization-based techniques are the most preferred choices to improve the QoS and reduce energy in the research field of CO in EC. In addition, this paper explores the significant issues and challenges that require further investigation. For future research, energy, QoS, and data provenance for dependent or dynamic task offloading in mobility scenarios can be explored further.
引用
收藏
页数:60
相关论文
共 50 条
  • [1] A comprehensive survey on reinforcement-learning-based computation offloading techniques in Edge Computing Systems
    Hortelano, Diego
    de Miguel, Ignacio
    Duran Barroso, Ramon J.
    Carlos Aguado, Juan
    Merayo, Noemi
    Ruiz, Lidia
    Asensio, Adrian
    Masip-Bruin, Xavi
    Fernandez, Patricia
    Abril, Evaristo J.
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2023, 216
  • [2] Authentication Security Level and Resource Optimization of Computation Offloading in Edge Computing Systems
    Xiao, Huizi
    Pei, Qingqi
    Song, Xifei
    Shi, Weisong
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (15) : 13010 - 13023
  • [3] A review of optimization methods for computation offloading in edge computing networks
    Sadatdiynov, Kuanishbay
    Cui, Laizhong
    Zhang, Lei
    Huang, Joshua Zhexue
    Salloum, Salman
    Mahmud, Mohammad Sultan
    DIGITAL COMMUNICATIONS AND NETWORKS, 2023, 9 (02) : 450 - 461
  • [4] Computation Offloading Toward Edge Computing
    Lin, Li
    Liao, Xiaofei
    Jin, Hai
    Li, Peng
    PROCEEDINGS OF THE IEEE, 2019, 107 (08) : 1584 - 1607
  • [5] Discontinuous Computation Offloading for Energy-Efficient Mobile Edge Computing
    Merluzzi, Mattia
    di Pietro, Nicola
    Di Lorenzo, Paolo
    Strinati, Emilio Calvanese
    Barbarossa, Sergio
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2022, 6 (02): : 1242 - 1257
  • [6] A survey on computation offloading modeling for edge computing
    Lin, Hai
    Zeadally, Sherali
    Chen, Zhihong
    Labiod, Houda
    Wang, Lusheng
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2020, 169
  • [7] Toward Computation Offloading in Edge Computing: A Survey
    Jiang, Congfeng
    Cheng, Xiaolan
    Gao, Honghao
    Zhou, Xin
    Wan, Jian
    IEEE ACCESS, 2019, 7 : 131543 - 131558
  • [8] Computation Offloading With Instantaneous Load Billing for Mobile Edge Computing
    Gao, Mingjin
    Shen, Rujing
    Li, Jun
    Yan, Shihao
    Li, Yonghui
    Shi, Jinglin
    Han, Zhu
    Zhuo, Li
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2022, 15 (03) : 1473 - 1485
  • [9] Energy-Efficient Computation Offloading in Collaborative Edge Computing
    Lin, Rongping
    Xie, Tianze
    Luo, Shan
    Zhang, Xiaoning
    Xiao, Yong
    Moran, Bill
    Zukerman, Moshe
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (21) : 21305 - 21322
  • [10] Energy Consumption and QoS-Aware Co-Offloading for Vehicular Edge Computing
    Lv, Wenkai
    Yang, Pengfei
    Zheng, Tianyang
    Yi, Bijie
    Ding, Yunqing
    Wang, Quan
    Deng, Minwen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (06) : 5214 - 5225