A Bayesian Collocation Integral Method for Parameter Estimation in Ordinary Differential Equations

被引:0
|
作者
Xu, Mingwei [1 ]
Wong, Samuel W. K. [1 ]
Sang, Peijun [1 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Gaussian quadrature; Nonlinear dynamic systems; Sparse time-course data; Spline approximation; REGRESSION;
D O I
10.1080/10618600.2024.2302528
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Inferring the parameters of ordinary differential equations (ODEs) from noisy observations is an important problem in many scientific fields. Currently, most parameter estimation methods that bypass numerical integration tend to rely on basis functions or Gaussian processes to approximate the ODE solution and its derivatives. Due to the sensitivity of the ODE solution to its derivatives, these methods can be hindered by estimation error, especially when only sparse time-course observations are available. We present a Bayesian collocation framework that operates on the integrated form of the ODEs and also avoids the expensive use of numerical solvers. Our methodology has the capability to handle general nonlinear ODE systems. We demonstrate the accuracy of the proposed method through simulation studies, where the estimated parameters and recovered system trajectories are compared with other recent methods. A real data example is also provided. Supplementary materials for this article are available online.
引用
收藏
页码:845 / 854
页数:10
相关论文
共 50 条
  • [1] A preprocessing method for parameter estimation in ordinary differential equations
    Strebel, Oliver
    CHAOS SOLITONS & FRACTALS, 2013, 57 : 93 - 104
  • [2] Parameter estimation of ordinary differential equations
    Li, ZF
    Osborne, MR
    Prvan, T
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (02) : 264 - 285
  • [3] A METHOD OF ESTIMATION FOR SOLUTION OF INTEGRAL AND DIFFERENTIAL EQUATIONS DEPENDING ON A PARAMETER
    SZAFRANIEC, FH
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1968, 16 (12): : 947 - +
  • [4] Gaussian Processes for Bayesian Estimation in Ordinary Differential Equations
    Wang, Yali
    Barber, David
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1485 - 1493
  • [5] Parameter continuation method for ordinary differential equations
    Vetekha, VG
    PROCEEDINGS OF THE SECOND ISAAC CONGRESS, VOLS 1 AND 2, 2000, 7 : 737 - 742
  • [6] Asymptotically efficient parameter estimation for ordinary differential equations
    Pang TianXiao
    Yan PeiSi
    Zhou, Harrison H.
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (11) : 2263 - 2286
  • [7] Asymptotically efficient parameter estimation for ordinary differential equations
    TianXiao Pang
    PeiSi Yan
    Harrison H. Zhou
    Science China Mathematics, 2017, 60 : 2263 - 2286
  • [8] A variational approach to parameter estimation in ordinary differential equations
    Kaschek, Daniel
    Timmer, Jens
    BMC SYSTEMS BIOLOGY, 2012, 6
  • [9] Parameter estimation for high dimensional ordinary differential equations
    Xue, Hongqi
    Linel, Patrice
    Chen, Jinhai
    Yuan, Ya-xiang
    Wu, Hulin
    INFORMATION TECHNOLOGY, 2015, : 273 - 279
  • [10] Asymptotically efficient parameter estimation for ordinary differential equations
    PANG TianXiao
    YAN PeiSi
    ZHOU Harrison H.
    Science China(Mathematics), 2017, 60 (11) : 2263 - 2286