High-throughput PRIME-editing screens identify functional DNA variants in the human genome

被引:17
作者
Ren, Xingjie [1 ]
Yang, Han [1 ]
Nierenberg, Jovia L. [2 ]
Sun, Yifan [1 ]
Chen, Jiawen [3 ]
Beaman, Cooper [1 ]
Pham, Thu [4 ]
Nobuhara, Mai [4 ]
Takagi, Maya Asami [1 ]
Narayan, Vivek [1 ]
Li, Yun [3 ,5 ,6 ]
Ziv, Elad [1 ,7 ,8 ]
Shen, Yin [1 ,9 ,10 ]
机构
[1] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA USA
[3] Univ North Carolina Chapel Hill, Dept Biostat, Chapel Hill, NC USA
[4] Univ Calif San Francisco, Pharmaceut Sci & Pharmacogen Grad Program, San Francisco, CA USA
[5] Univ N Carolina, Dept Genet, Chapel Hill, NC USA
[6] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC USA
[7] Univ Calif San Francisco, Dept Med, Div Gen Internal Med, San Francisco, CA USA
[8] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA USA
[9] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA
[10] Univ Calif San Francisco, Weill Inst Neurosci, San Francisco, CA 94143 USA
基金
美国国家卫生研究院;
关键词
CRISPR; CELLS;
D O I
10.1016/j.molcel.2023.11.021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Despite tremendous progress in detecting DNA variants associated with human disease, interpreting their functional impact in a high-throughput and single-base resolution manner remains challenging. Here, we develop a pooled prime-editing screen method, PRIME, that can be applied to characterize thousands of coding and non-coding variants in a single experiment with high reproducibility. To showcase its applications, we first identified essential nucleotides for a 716 bp MYC enhancer via PRIME-mediated single-base resolution analysis. Next, we applied PRIME to functionally characterize 1,304 genome-wide association study (GWAS)-identified non-coding variants associated with breast cancer and 3,699 variants from ClinVar. We discovered that 103 non-coding variants and 156 variants of uncertain significance are functional via affecting cell fitness. Collectively, we demonstrate that PRIME is capable of characterizing genetic variants at single-base resolution and scale, advancing accurate genome annotation for disease risk prediction, diagnosis, and therapeutic target identification.
引用
收藏
页码:4633 / 4645.e9
页数:23
相关论文
共 36 条
  • [1] High-Throughput Functional Genetic and Compound Screens Identify Targets for Senescence Induction in Cancer
    Wang, Liqin
    de Oliveira, Rodrigo Leite
    Wang, Cun
    Fernandes Neto, Joao M.
    Mainardi, Sara
    Evers, Bastiaan
    Lieftink, Cor
    Morris, Ben
    Jochems, Fleur
    Willemsen, Lisa
    Beijersbergen, Roderick L.
    Bernards, Rene
    CELL REPORTS, 2017, 21 (03): : 773 - 783
  • [2] FLASH assembly of TALENs for high-throughput genome editing
    Reyon, Deepak
    Tsai, Shengdar Q.
    Khayter, Cyd
    Foden, Jennifer A.
    Sander, Jeffry D.
    Joung, J. Keith
    NATURE BIOTECHNOLOGY, 2012, 30 (05) : 460 - +
  • [3] Expanding the flexibility of base editing for high-throughput genetic screens in bacteria
    Gawlitt, Sandra
    Collins, Scott P.
    Yu, Yanying
    Blackman, Samuel A.
    Barquist, Lars
    Beisel, Chase L.
    NUCLEIC ACIDS RESEARCH, 2024, 52 (07) : 4079 - 4097
  • [4] High-throughput screens identify a lipid nanoparticle that preferentially delivers mRNA to human tumors in vivo
    Huayamares, Sebastian G.
    Lokugamage, Melissa P.
    Rab, Regina
    Sanchez, Alejandro J. Da Silva
    Kim, Hyejin
    Radmand, Afsane
    Loughrey, David
    Lian, Liming
    Hou, Yuning
    Achyut, Bhagelu R.
    Ehrhardt, Annette
    Hong, Jeong S.
    Sago, Cory D.
    Paunovska, Kalina
    Echeverri, Elisa Schrader
    Vanover, Daryll
    Santangelo, Philip J.
    Sorscher, Eric J.
    Dahlman, James E.
    JOURNAL OF CONTROLLED RELEASE, 2023, 357 : 394 - 403
  • [5] Genome editing applications in plants: high-throughput CRISPR/Cas editing for crop improvement
    Thomson, Michael
    JOURNAL OF ANIMAL SCIENCE, 2019, 97 : 56 - 56
  • [6] High-throughput sequencing of DNA G-quadruplex structures in the human genome
    Chambers, Vicki S.
    Marsico, Giovanni
    Boutell, Jonathan M.
    Di Antonio, Marco
    Smith, Geoffrey P.
    Balasubramanian, Shankar
    NATURE BIOTECHNOLOGY, 2015, 33 (08) : 877 - +
  • [7] A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids
    Beneke, Tom
    Madden, Ross
    Makin, Laura
    Valli, Jessica
    Sunter, Jack
    Gluenz, Eva
    ROYAL SOCIETY OPEN SCIENCE, 2017, 4 (05): : 1 - 16
  • [8] High-throughput functional evaluation of BRCA2 variants of unknown significance
    Ikegami, Masachika
    Kohsaka, Shinji
    Ueno, Toshihide
    Momozawa, Yukihide
    Inoue, Satoshi
    Tamura, Kenji
    Shimomura, Akihiko
    Hosoya, Noriko
    Kobayashi, Hiroshi
    Tanaka, Sakae
    Mano, Hiroyuki
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [9] CRISPRMatch: An Automatic Calculation and Visualization Tool for High-throughput CRISPR Genome-editing Data Analysis
    You, Qi
    Zhong, Zhaohui
    Ren, Qiurong
    Hassan, Fakhrul
    Zhang, Yong
    Zhang, Tao
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2018, 14 (08): : 858 - 862
  • [10] High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing
    Sago, Cory D.
    Lokugamage, Melissa P.
    Paunovska, Kalina
    Vanover, Daryll A.
    Monaco, Christopher M.
    Shah, Nirav N.
    Castro, Marielena Gamboa
    Anderson, Shannon E.
    Rudoltz, Tobi G.
    Lando, Gwyneth N.
    Tiwari, Pooja Mummilal
    Kirschman, Jonathan L.
    Willett, Nick
    Jang, Young C.
    Santangelo, Philip J.
    Bryksin, Anton V.
    Dahlman, James E.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (42) : E9944 - E9952