Methanation of CO2 on Cu in a tubular co-ionic SOEC

被引:4
|
作者
Ruiz, Esperanza [1 ]
Aldecoa, Juan [2 ,3 ]
Morales, Angel [1 ]
Farchado, Meryem [1 ]
Maria Sanchez, Jose [1 ]
机构
[1] Ctr Invest Energet Medioambientales & Tecnol CIEM, Ave Complutense 40, Madrid 28040, Spain
[2] Assoc European Renewable Energy Res Ctr EUREC, Pl Champ Mars 2, B-1050 Brussels, Belgium
[3] Sisener Ingn SL, Paseo Independencia 16,1st Floor, Zaragoza 50004, Spain
关键词
CO2; methanation; Cu; co-ionic SOEC; Bench scale PtG; H-2; carriers; ELECTROLYTE MEMBRANE REACTORS; ELECTROCHEMICAL PROMOTION; CARBON-DIOXIDE; HYDROGENATION REACTION; COMPOSITE ELECTRODES; SURFACE OXIDATION; FUEL ELECTRODES; BENCH-SCALE; CATALYSTS; RU;
D O I
10.1016/j.ijhydene.2023.08.325
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work aims contributing to develop a cathode for CO2 methanation in tubular co-ionic (H+/O2- conducting) SOECs and to cell operation optimization to decrease energy input and costs for advancing process application. It studies the effect of temperature (325-550 degrees C) and potential (from -2 to +2 V at 450 degrees C) on CO2 conversion and selectivity to CH4 and CO, at bench scale, at atmospheric pressure and using high flowrates (42 NL/h) and realistic compositions (4H(2)/CO2 binary mix), over a Cu film (<2 mu m) coated by electroless on an anode (Ni-BZCY)-supported solid electrolyte (BZCY) candle. CH4 preferentially forms over CO. CH4 selectivity increases with temperature up to 97.3% at 400 degrees C, from which, CH4 and CO selectivity decreases and increases, respectively. The optimum potential is -0.5V, as maximizes CH4 selectivity (94.2%) and minimizes energy cost (0.002 kWh/kg CH4) with high CO2 conversion (32.5%) and low CO selectivity (5.8%), resulting in higher CH4 yield and lower CH4 purification cost.(c) 2023 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1338 / 1359
页数:22
相关论文
共 50 条
  • [41] Continuous flow photoassisted CO2 methanation
    Albero, Josep
    Dominguez, Esther
    Corma, Avelino
    Garcia, Hermenegildo
    SUSTAINABLE ENERGY & FUELS, 2017, 1 (06): : 1303 - 1307
  • [42] Fundamentals and applications of photocatalytic CO2 methanation
    Ulmer, Ulrich
    Dingle, Thomas
    Duchesne, Paul N.
    Morris, Robert H.
    Tayasoli, Alexandra
    Wood, Thomas
    Ozin, Geoffrey A.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [43] METHANATION OF CO2 ON SUPPORTED RHODIUM CATALYST
    SOLYMOSI, F
    ERDOHELYI, A
    BANSAGI, T
    JOURNAL OF CATALYSIS, 1981, 68 (02) : 371 - 382
  • [44] Fundamentals and applications of photocatalytic CO2 methanation
    Ulrich Ulmer
    Thomas Dingle
    Paul N. Duchesne
    Robert H. Morris
    Alexandra Tavasoli
    Thomas Wood
    Geoffrey A. Ozin
    Nature Communications, 10
  • [45] Methanation of CO2 on iron based catalysts
    Kirchner, Johann
    Anolleck, Jasmin Katharina
    Loesch, Henry
    Kureti, Sven
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 223 : 47 - 59
  • [46] Research progress of CO2 methanation catalysts
    Yang S.
    Li Z.-J.
    Yang L.-Y.
    Cen J.
    Yao N.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2023, 37 (01): : 13 - 21
  • [47] Low Temperature Sabatier CO2 Methanation
    Molinet-Chinaglia, Clement
    Shafiq, Seema
    Serp, Philippe
    CHEMCATCHEM, 2024,
  • [48] Catalytic CO2 Methanation Reactors and Processes
    Ngo, Son Ich
    Garcia-Bordeje, Enrique
    CATALYSTS, 2023, 13 (11)
  • [49] Measurement and Numerical Simulation of Temperature Distributions of a Micro-tubular SOEC during H2O/CO2 Co-electrolysis
    Maeda, A.
    Watanabe, K.
    Araki, T.
    Mori, M.
    SOLID OXIDE FUEL CELLS 15 (SOFC-XV), 2017, 78 (01): : 3113 - 3121
  • [50] Process design and evaluation of CO2 to methanol coupled with SOEC
    Li G.
    Cao A.
    Meng W.
    Wang D.
    Yang Y.
    Zhou H.
    Huagong Xuebao/CIESC Journal, 2023, 74 (07): : 2999 - 3009