Three dimensional printed biofilms: Fabrication, design and future biomedical and environmental applications

被引:6
作者
Lazarus, Emily [1 ]
Meyer, Anne S. [2 ]
Ikuma, Kaoru [3 ]
Rivero, Iris V. [1 ,4 ,5 ,6 ]
机构
[1] Rochester Inst Technol, Dept Ind & Syst Engn, Rochester, NY USA
[2] Univ Rochester, Dept Biol, Rochester, NY USA
[3] Iowa State Univ, Dept Civil Construct & Environm Engn, Ames, IA USA
[4] Rochester Inst Technol, Dept Biomed Engn, Rochester, NY USA
[5] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL USA
[6] Univ Florida, Dept Ind & Syst Engn, 202 Weil Hall, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
IN-VITRO; ESCHERICHIA-COLI; CELLS; SUSCEPTIBILITY; RESISTANCE; CONSTRUCTS; SCAFFOLDS; ALGINATE; POROSITY; FIBER;
D O I
10.1111/1751-7915.14360
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Three dimensional printing has emerged as a widely acceptable strategy for the fabrication of mammalian cell laden constructs with complex microenvironments for tissue engineering and regenerative medicine. More recently 3D printed living materials containing microorganisms have been developed and matured into living biofilms. The potential for engineered 3D biofilms as in vitro models for biomedical applications, such as antimicrobial susceptibility testing, and environmental applications, such as bioleaching, bioremediation, and wastewater purification, is extensive but the need for an in-depth understanding of the structure-function relationship between the complex construct and the microorganism response still exists. This review discusses 3D printing fabrication methods for engineered biofilms with specific structural features. Next, it highlights the importance of bioink compositions and 3D bioarchitecture design. Finally, a brief overview of current and potential applications of 3D printed biofilms in environmental and biomedical fields is discussed. This review discusses 3D printing fabrication methods for engineered biofilms with specific structural features. Next, it highlights the importance of bioink compositions and 3D bio architecture design. Finally, a brief overview of current and potential applications of 3D printed biofilms in environmental and biomedical fields is discussed.image
引用
收藏
页数:15
相关论文
共 90 条
[31]   ANTIBIOTIC INTERACTION AND DIFFUSION THROUGH ALGINATE AND EXOPOLYSACCHARIDE OF CYSTIC FIBROSIS-DERIVED PSEUDOMONAS-AERUGINOSA [J].
GORDON, CA ;
HODGES, NA ;
MARRIOTT, C .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 1988, 22 (05) :667-674
[32]   Bacterial Materials: Applications of Natural and Modified Biofilms [J].
Hayta, Elif N. ;
Ertelt, Marvin J. ;
Kretschmer, Martin ;
Lieleg, Oliver .
ADVANCED MATERIALS INTERFACES, 2021, 8 (21)
[33]   Lactate production byStaphylococcus aureusbiofilm inhibits HDAC11 to reprogramme the host immune response during persistent infection [J].
Heim, Cortney E. ;
Bosch, Megan E. ;
Yamada, Kelsey J. ;
Aldrich, Amy L. ;
Chaudhari, Sujata S. ;
Klinkebiel, David ;
Gries, Casey M. ;
Alqarzaee, Abdulelah A. ;
Li, Yixuan ;
Thomas, Vinai C. ;
Seto, Edward ;
Karpf, Adam R. ;
Kielian, Tammy .
NATURE MICROBIOLOGY, 2020, 5 (10) :1271-+
[34]   Towards the biofilm characterization and regulation in biological wastewater treatment [J].
Huang, Hui ;
Peng, Chong ;
Peng, Pengcheng ;
Lin, Yuan ;
Zhang, Xuxiang ;
Ren, Hongqiang .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 103 (03) :1115-1129
[35]   Programmable and printable Bacillus subtilis biofilms as engineered living materials [J].
Huang, Jiaofang ;
Liu, Suying ;
Zhang, Chen ;
Wang, Xinyu ;
Pu, Jiahua ;
Ba, Fang ;
Xue, Shuai ;
Ye, Haifeng ;
Zhao, Tianxin ;
Li, Ke ;
Wang, Yanyi ;
Zhang, Jicong ;
Wang, Lihua ;
Fan, Chunhai ;
Lu, Timothy K. ;
Zhong, Chao .
NATURE CHEMICAL BIOLOGY, 2019, 15 (01) :34-+
[36]   3D-printed chitosan-based scaffolds: An in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats [J].
Intini, Claudio ;
Elviri, Lisa ;
Cabral, Jaydee ;
Mros, Sonya ;
Bergonzi, Carlo ;
Bianchera, Annalisa ;
Flammini, Lisa ;
Govoni, Paolo ;
Barocelli, Elisabetta ;
Bettini, Ruggero ;
McConnell, Michelle .
CARBOHYDRATE POLYMERS, 2018, 199 :593-602
[37]   3D Bioprinting Strategies for the Regeneration of Functional Tubular Tissues and Organs [J].
Jeong, Hun-Jin ;
Nam, Hyoryung ;
Jang, Jinah ;
Lee, Seung-Jae .
BIOENGINEERING-BASEL, 2020, 7 (02)
[38]   Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation [J].
Johnston, Trevor G. ;
Yuan, Shuo-Fu ;
Wagner, James M. ;
Yi, Xiunan ;
Saha, Abhijit ;
Smith, Patrick ;
Nelson, Alshakim ;
Alper, Hal S. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[39]   An Introduction to 3D Bioprinting: Possibilities, Challenges and Future Aspects [J].
Kacarevic, Zeljka P. ;
Rider, Patrick M. ;
Alkildani, Said ;
Retnasingh, Sujith ;
Smeets, Ralf ;
Jung, Ole ;
Ivanisevic, Zrinka ;
Barbeck, Mike .
MATERIALS, 2018, 11 (11)
[40]   Spatial mapping of polymicrobial communities reveals a precise biogeography associated with human dental caries [J].
Kim, Dongyeop ;
Barraza, Juan P. ;
Arthur, Rodrigo A. ;
Hara, Anderson ;
Lewis, Karl ;
Liu, Yuan ;
Scisci, Elizabeth L. ;
Hajishengallis, Evlambia ;
Whiteley, Marvin ;
Koo, Hyun .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (22) :12375-12386