Few-Shot Aerial Image Semantic Segmentation Leveraging Pyramid Correlation Fusion

被引:9
作者
Ao, Wei [1 ]
Zheng, Shunyi [1 ]
Meng, Yan [2 ]
Gao, Zhi [1 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[2] Hubei Univ, Sch Artificial Intelligence, Wuhan 430062, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
关键词
Distance correlation; few-shot semantic segmentation (FSS); meta-learning; remote-sensing image processing; semantic correspondence; DEEP; NETWORK; CLASSIFICATION; AGGREGATION;
D O I
10.1109/TGRS.2023.3328339
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Few-shot semantic segmentation (FSS) has gained significant attention due to its ability to segment novel objects using only a limited number of labeled samples, thereby addressing the problem of overfitting caused by a lack of training data. Although this technique is widely studied in the field of computer vision, there are few methods for remote-sensing images. Prevalent FSS methods can achieve remarkable results for natural images, but they are difficult to apply to remote-sensing image processing because existing methods rarely take into consideration the large-scale and resolution differences in remote-sensing images. Consequently, it is hard for them to obtain correct semantic guidance from a few annotated remote-sensing images. To tackle these problems, this article proposes the pyramid correlation fusion network (PCFNet) to promote the ability to mine helpful information by calculating multiscale pixel-wise semantic correspondence. Particularly, the dual-distance correlation (DDC) module is designed to simultaneously compute the cosine similarity and Euclidean distance between query features and support features, producing adequate guidance information to determine the category of each pixel. Moreover, to improve segmentation accuracy for small objects, the scale-aware cross-entropy loss (SACELoss) is introduced to dynamically assign loss weights according to the actual sizes of objects. This enables smaller objects to be assigned larger weight values and thus receive more attention during training. Comprehensive experiments on both the iSAID- 5(i) and DLRSD- 5(i) datasets demonstrate that our method outperforms state-of-the-art FSS methods. Our code is available at https://github.com/TinyAway/PCFNet.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 62 条
[1]  
Andrychowicz M, 2016, ADV NEUR IN, V29
[2]   Improved Road Connectivity by Joint Learning of Orientation and Segmentation [J].
Batra, Anil ;
Singh, Suriya ;
Pang, Guan ;
Basu, Saikat ;
Jawahar, C., V ;
Paluri, Manohar .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :10377-10385
[3]   Boundary Loss for Remote Sensing Imagery Semantic Segmentation [J].
Bokhovkin, Alexey ;
Burnaev, Evgeny .
ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT II, 2019, 11555 :388-401
[4]  
Chaudhuri B, 2018, IEEE T GEOSCI REMOTE, V56, P1144, DOI [10.1109/TGRS.2017.2760909, 10.1109/tgrs.2017.2760909]
[5]   Symmetrical Dense-Shortcut Deep Fully Convolutional Networks for Semantic Segmentation of Very-High-Resolution Remote Sensing Images [J].
Chen, Guanzhou ;
Zhang, Xiaodong ;
Wang, Qing ;
Dai, Fan ;
Gong, Yuanfu ;
Zhu, Kun .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (05) :1633-1644
[6]   DARNet: Deep Active Ray Network for Building Segmentation [J].
Cheng, Dominic ;
Liao, Renjie ;
Fidler, Sanja ;
Urtasun, Raquel .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :7423-7431
[7]   ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data [J].
Diakogiannis, Foivos, I ;
Waldner, Francois ;
Caccetta, Peter ;
Wu, Chen .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 162 :94-114
[8]  
Dong N., 2018, BRIT MACHINE VISION, P79
[9]   Water Body Extraction From Very High-Resolution Remote Sensing Imagery Using Deep U-Net and a Superpixel-Based Conditional Random Field Model [J].
Feng, Wenqing ;
Sui, Haigang ;
Huang, Weiming ;
Xu, Chuan ;
An, Kaiqiang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (04) :618-622
[10]  
Finn C, 2017, PR MACH LEARN RES, V70