Machine learning applied in patient-reported outcome research-exploring symptoms in adjuvant treatment of breast cancer

被引:2
|
作者
Pappot, Helle [1 ,2 ]
Bjoernsson, Benony P. [3 ]
Krause, Oswin [3 ]
Baeksted, Christina [4 ]
Bidstrup, Pernille E. [4 ,5 ]
Dalton, Susanne O. [2 ,4 ]
Johansen, Christoffer [1 ,2 ]
Knoop, Ann [1 ]
Vogelius, Ivan [1 ,2 ]
Hollander-Mieritz, Cecilie [1 ]
机构
[1] Univ Hosp Copenhagen, Dept Oncol, Rigshosp, Sect 5073, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
[2] Univ Copenhagen, Inst Clin Med, Copenhagen, Denmark
[3] Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
[4] Danish Canc Soc Res Ctr, Copenhagen, Denmark
[5] Univ Copenhagen, Inst Psychol, Copenhagen, Denmark
关键词
Breast cancer; Patient-reported outcome; Artificial intelligence; Machine learning;
D O I
10.1007/s12282-023-01515-9
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundPatient-reported outcome (PRO) data may help us better understand the life of breast cancer patients. We have previously collected PRO data in a national Danish breast cancer study in patients undergoing adjuvant chemotherapy. The aim of the present post-hoc explorative study is to apply Machine Learning (ML) algorithms using permutation importance to explore how specific PRO symptoms influence nonadherence to six cycles of planned adjuvant chemotherapy in breast cancer patients.MethodsWe here investigate ePRO-data from the 347 patients. The ePRO presented 42 PROCTCAE questions on 25 symptoms. Patients completed the ePRO before each cycle of chemotherapy. Number of patients with completion of the scheduled six cycles of chemotherapy were registered. Two ML models were applied. One aimed at discovering the individual relative importance of the different questions in the dataset while the second aimed at discovering the relationships between the questions. Permutation importance was used.ResultsOut of 347 patients 238 patients remained in the final dataset, 15 patients dropped out. Two symptoms: aching joints and numbness/tingling, were the most important for dropout in the final dataset, each with an importance value of about 0.04. Model's average ROC-AUC-score being 0.706. In the second model a low performance score made the results very unreliable.ConclusionIn conclusion, this explorative data analysis using ML methodologies in an ePRO dataset from a population of women with breast cancer treated with adjuvant chemotherapy unravels that the symptoms aching joints and numbness/tingling could be important for drop out of planned adjuvant chemotherapy.
引用
收藏
页码:148 / 153
页数:6
相关论文
共 50 条
  • [1] Machine learning applied in patient-reported outcome research—exploring symptoms in adjuvant treatment of breast cancer
    Helle Pappot
    Benóný P. Björnsson
    Oswin Krause
    Christina Bæksted
    Pernille E. Bidstrup
    Susanne O. Dalton
    Christoffer Johansen
    Ann Knoop
    Ivan Vogelius
    Cecilie Holländer-Mieritz
    Breast Cancer, 2024, 31 : 148 - 153
  • [2] Machine learning in oncology-Perspectives in patient-reported outcome research
    Lehmann, Jens
    Cofala, Tim
    Tschuggnall, Michael
    Giesinger, Johannes M.
    Rumpold, Gerhard
    Holzner, Bernhard
    ONKOLOGE, 2021, 27 (SUPPL 2): : 150 - 155
  • [3] Machine learning in oncology-Perspectives in patient-reported outcome research. German version
    Lehmann, Jens
    Cofala, Tim
    Tschuggnall, Michael
    Giesinger, Johannes M.
    Rumpold, Gerhard
    Holzner, Bernhard
    ONKOLOGE, 2021, 27 (06): : 587 - 594
  • [4] Machine learning in oncology—Perspectives in patient-reported outcome researchMachine Learning in der Onkologie – Perspektiven in der Patient-Reported Outcome Forschung (English version)
    Jens Lehmann
    Tim Cofala
    Michael Tschuggnall
    Johannes M. Giesinger
    Gerhard Rumpold
    Bernhard Holzner
    Der Onkologe, 2021, 27 (Suppl 2): : 150 - 155
  • [5] Machine Learning in der Onkologie – Perspektiven in der Patient-Reported-Outcome-ForschungMachine learning in oncology—Perspectives in patient-reported outcome research. German version
    Jens Lehmann
    Tim Cofala
    Michael Tschuggnall
    Johannes M. Giesinger
    Gerhard Rumpold
    Bernhard Holzner
    Der Onkologe, 2021, 27 : 587 - 594
  • [6] Patient-Reported Outcome Measures in Breast Cancer Surgery
    Minji Kim
    Francis D. Graziano
    Audree B. Tadros
    Robert J. Allen
    Jonas A. Nelson
    Current Surgery Reports, 2024, 12 : 67 - 75
  • [7] Patient-Reported Outcome Measures in Breast Cancer Surgery
    Kim, Minji
    Graziano, Francis D.
    Tadros, Audree B.
    Allen Jr, Robert J.
    Nelson, Jonas A.
    CURRENT SURGERY REPORTS, 2024, 12 (05) : 67 - 75
  • [8] Electronic Patient-reported Outcomes During Breast Cancer Adjuvant Radiotherapy
    Takala, Laura
    Kuusinen, Tuuli-Elina
    Skytta, Tanja
    Kellokumpu-Lehtinen, Pirkko-Liisa
    Barlund, Maarit
    CLINICAL BREAST CANCER, 2021, 21 (03) : E252 - E270
  • [9] Patient-reported symptoms after breast cancer diagnosis and treatment: A retrospective cohort study
    Davis, Laura E.
    Bubis, Lev D.
    Mahar, Alyson L.
    Li, Qing
    Sussman, Jonathan
    Moody, Lesley
    Barbera, Lisa
    Holloway, Claire M. B.
    Coburn, Natalie G.
    EUROPEAN JOURNAL OF CANCER, 2018, 101 : 1 - 11
  • [10] Current status and future perspectives of patient-reported outcome research in clinical trials for patients with breast cancer in Japan
    Shozo Ohsumi
    Kojiro Shimozuma
    Breast Cancer, 2013, 20 : 296 - 301