Effects of Different Water and Nitrogen Supply Modes on Peanut Growth and Water and Nitrogen Use Efficiency under Mulched Drip Irrigation in Xinjiang

被引:5
|
作者
Dong, Jianshu [1 ]
Xue, Zhu [1 ]
Shen, Xiaojun [1 ]
Yi, Ruochen [1 ]
Chen, Junwei [1 ]
Li, Qiang [2 ]
Hou, Xianfei [2 ]
Miao, Haocui [2 ]
机构
[1] Tianjin Agr Univ, Coll Water Conservancy Engn, Tianjin 300392, Peoples R China
[2] Xinjiang Acad Agr Sci, Inst Econ Crops, Urumqi 830091, Peoples R China
来源
PLANTS-BASEL | 2023年 / 12卷 / 19期
基金
中国国家自然科学基金;
关键词
peanuts; irrigation water quota; water use efficiency; nitrogen use efficiency; drip irrigation; GRAIN-YIELD; DRY-MATTER; FERTILIZER; COTTON;
D O I
10.3390/plants12193368
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The optimization of irrigation and fertilization indexes for peanuts with drip irrigation is urgently needed in Xinjiang. A field experiment was conducted during the 2021 peanut growing season at Urumqi, Xinjiang, in Northwestern China, to evaluate the effects of different water and nitrogen treatments on the growth, yield, and water and nitrogen utilization of peanuts. In field experiments, we set up three irrigation levels (irrigation water quotas of 22.5, 30, and 37.5 mm, respectively, for W1, W2, and W3), two nitrogen application levels (77.5 and 110 kg center dot ha-1, recorded as N1 and N2), and a control treatment (W2N0) that did not include the application of nitrogen. The results showed that nitrogen application enhanced the growth, physiological indexes, yield, and water use efficiency of the W1, W2, and W3 treatments when the irrigation volume remained the same. In comparison with no nitrogen application (W2N0), the peanut growth, physiological indexes, yield, and water use efficiency improved with increasing irrigation amounts in the N1 and N2 treatments. With an increase in the irrigation volume, the water use efficiency grew; the W3N2 treatment had the highest water use efficiency, which was 1.32 kg center dot m-3. The total water consumption and reproductive-stage water consumption of the peanuts in all treatments increased with the irrigation volume, and a high yield was achieved at 402.57 mm, which was 5.2974 Mg center dot ha-1. In the W1, W2, and W3 treatments, the nitrogen partial factor productivity significantly decreased as the nitrogen application increased, with the nitrogen partial factor productivity in the W3N1 treatment being the highest, at 60.61 kg center dot kg-1. A comprehensive evaluation based on principal component analysis assigned W3N2 the higher score. These findings suggest that irrigation water quotas of 37.5 mm should be coupled with 110 kg center dot ha-1 nitrogen applications for peanuts using drip irrigation in mulch film in Xinjiang.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Nitrogen application rates from dilution curve model for cotton under film-mulched drip irrigation with brackish water
    Wei K.
    Deng M.
    Wang Q.
    Guo Y.
    Lin S.
    Mu W.
    Tao W.
    Su L.
    Zhang J.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (07): : 124 - 132
  • [32] Soil water/salt balance and water productivity of typical irrigation schedules for cotton under film mulched drip irrigation in northern Xinjiang
    Ning, Songrui
    Zhou, Beibei
    Shi, Jianchu
    Wang, Quanjiu
    AGRICULTURAL WATER MANAGEMENT, 2021, 245
  • [33] Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation
    Ibragimov, Nazirbay
    Evett, Steven R.
    Esanbekov, Yusupbek
    Kamilov, Bakhtiyor S.
    Mirzaev, Lutfullo
    Lamers, John P. A.
    AGRICULTURAL WATER MANAGEMENT, 2007, 90 (1-2) : 112 - 120
  • [34] Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region
    Badr, M. A.
    El-Tohamy, W. A.
    Zaghloul, A. M.
    AGRICULTURAL WATER MANAGEMENT, 2012, 110 : 9 - 15
  • [35] Root Growth, Fruit Yield and Water Use Efficiency of Greenhouse Grown Tomato Under Different Irrigation Regimes and Nitrogen Levels
    Wang, Xiukang
    Yun, Jia
    Shi, Peng
    Li, Zhanbin
    Li, Peng
    Xing, Yingying
    JOURNAL OF PLANT GROWTH REGULATION, 2019, 38 (02) : 400 - 415
  • [36] Water and Nitrogen Use of Winter Wheat under Different Supplemental Irrigation Regimes
    Man, Jianguo
    Yu, Zhenwen
    Zhang, Yongli
    Shi, Yu
    Wang, Liqiu
    CROP SCIENCE, 2016, 56 (06) : 3237 - 3249
  • [37] Maize nitrogen uptake and use efficiency, partial factor productivity of nitrogen, and yield response to different nitrogen and water applications under three irrigation methods
    Irmak, Suat
    Mohammed, Ali T.
    IRRIGATION AND DRAINAGE, 2024, 73 (01) : 64 - 88
  • [38] Root Growth, Water and Nitrogen Use Efficiencies in Winter Wheat Under Different Irrigation and Nitrogen Regimes in North China Plain
    Liu, Weixing
    Wang, Jiarui
    Wang, Chenyang
    Ma, Geng
    Wei, Qiongru
    Lu, Hongfang
    Xie, Yingxin
    Ma, Dongyun
    Kang, Guozhang
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [39] Effects of water salinity and N application rate on water- and N-use efficiency of cotton under drip irrigation
    Min, Wei
    Hou, ZhenAn
    Ma, LiJuan
    Zhang, Wen
    Ru, SiBo
    Ye, Jun
    JOURNAL OF ARID LAND, 2014, 6 (04) : 454 - 467
  • [40] Effect of brackish water on tomato yield and water consumption under mulched-drip irrigation
    Wan, SQ
    Kang, YH
    Liu, SP
    LAND AND WATER MANAGEMENT: DECISION TOOLS AND PRACTICES, VOLS 1 AND 2, 2004, : 1270 - 1278